Routing for Network Capacity Maximization in Energyconstrained Ad-hoc Networks

IEEE INFOCOM 2003

Presented by Liu Yang-Chun

Outline

- Introduction
- Related work
- The CMAX algorithm
- Implementation issues
- Simulation results

Introduction

Objective

- Maximize total number of messages successfully carried by the network (network capacity)
- No assumptions on future message arrivals

Related work

- Motivated by max-min ZPmin
 - Assumes messages generate at constant rate
 - Involves several shortest path computation

CMAX Algorithm

- Step 1. Consider routing message k on the network G. Eliminate all links $(i, j) \in A$ for which $e_{ij} > \frac{E_i(k)}{l_k}$ to form a reduced network.
 - eij := energy consumed for transmitting a unit message along link (i, j) Ei(k) := the residual energy of node i when k generated

CMAX Algorithm (cont'd)

Step 2. Associate weights w_{ij} with each link (i, j) in the reduced graph, where $w_{ij} = e_{ij}(\lambda^{\alpha_i(k)} - 1)$.

:= appropriate constant

CMAX Algorithm (cont'd)

Step 3. Find the shortest path from s_k to d_k in the reduced graph with link weights w_{ij} , as defined in Step 2.

- $S_k :=$ source node of message k
- d_k := destination node of message k
- Wij:= weight of link (i, j)

CMAX Algorithm (cont'd)

- Step 4. Let γ_k be the length of the shortest path found in Step 3 ($\gamma_k = \infty$ if no path was found). If $\gamma_k \leq \sigma$, route the message along the shortest path, otherwise reject it.
 - σ := appropriate constant

Competitive bound

Theorem 1: Let $\lambda=2(n\rho+1)$ and $\sigma=ne_{\max}.$ For all messages k, let

$$l_k \le \frac{\min_{i \in N} E_i}{e_{\max} \log \lambda} \tag{1}$$

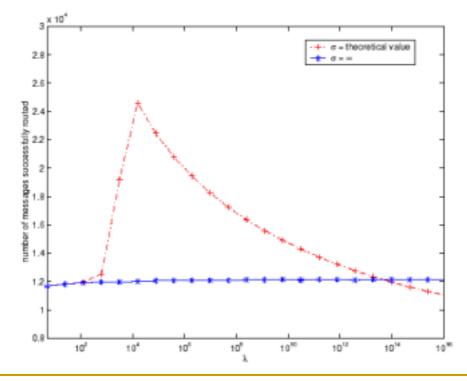
Then

$$\frac{L(k)}{L_{opt}(k)} \geq \frac{1}{1 + 2\log\lambda} \qquad \forall k.$$

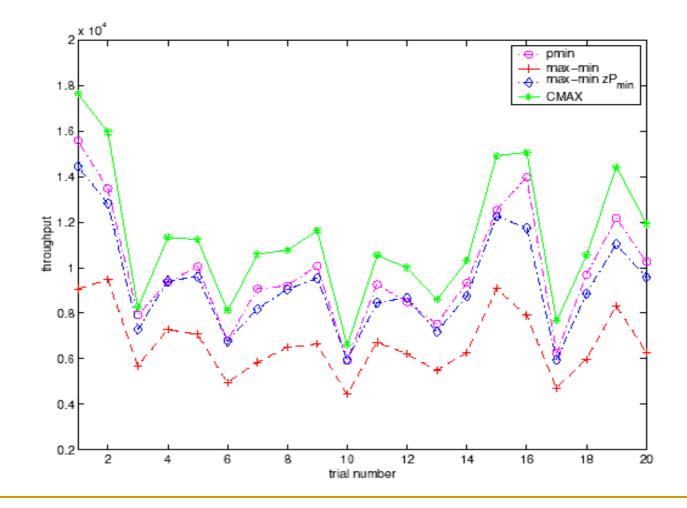
→ Competitive ratio of CMAX : $O(\log n\rho)$

Implementation

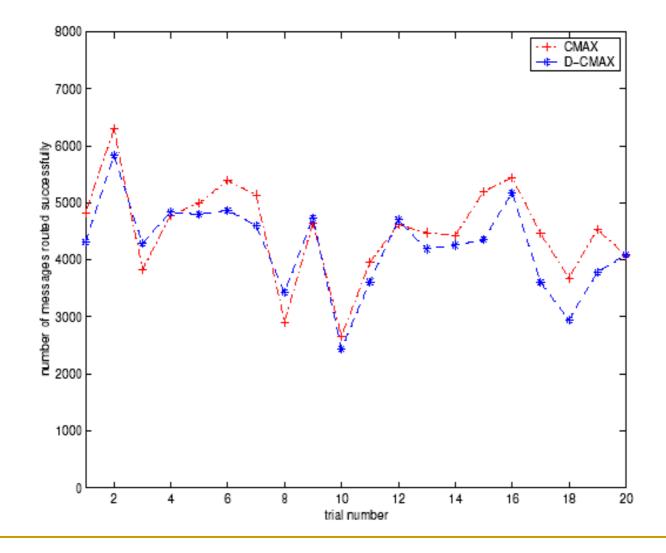
- Whole network topology
 - Relatively static → any changes disseminated throughout the network
- Current energy utilization at each node
 - Changes frequently
 - Dissemination of global energy information is not feasible in large networks
 - $\Box \rightarrow$ use Limited Flooding Approach


Limited Flooding Approach

- In order to get neighborhood's energy information.
- Hop-by-hop routing like OSPF
 - Each node computes shortest path
 - Periodically broadcast its residual energy
 - Within limited distance
- We call it D-CMAX


Effect of and σ

• σ <= 70, <= 140,000 from Theorem 1.


• σ < implies admission control

Simulation result

CMAX vs. D-CMAX

Discussions

How much does the energy consumption decrease?