Movement-Assisted Sensor Deployment

INFOCOM 2004

The problem of sensor deployment

- Given the target area, how to maximize the sensor coverage with less time, movement distance and message complexity
- The importance of the problem
- Distributed instead of centralized

Voronoi diagram

• Definition:

Every point in a given polygon is closer to the node in this polygon than to any other node.

Overview of the proposed algorithm

- Sensors broadcast their locations and construct local Voronoi polygons
- Find the coverage holes by examine Voronoi polygons
- If holes exist, reduce coverage hole by moving
 - VEC, VOR, Minimax

Reduce coverage holes

- VEC : VECtor-based
 - Push sensors away from a densely covered area
- VOR : VORonoi-based
 - Pull sensors to the sparsely covered area
- Minimax
 - Move sensors to their local center area

VEC algorithm

- Motivated by the attributes of electromagnetic particles
- d(s_i, s_j): distance between sensor i and sensor j
- dave : average distance between two sensors
- one node fixed, the other will be pushed dave - d(Si, Sj)

VEC algorithm

- Broadcast hello to neighbors
- Receive hello messages from neighbors and update Voronoi polygon
- Do vector summation
- Do movement adjustment

Movement adjustment

- To reduce the error of virtual-force
- It checks whether the local coverage will be increased by moving to the target location
- If local coverage increased at target location, the sensor will move, otherwise, it will stay

Execution of VEC

75.7 % \rightarrow 92.2 % \rightarrow 94.7 %

VOR algorithm

- Pull sensors to get local maximum coverage
- If a sensor detects coverage holes, it will move toward its farthest Voronoi vertex

VOR algorithm

- VOR is a greedy algorithm
- Try to fix the largest hole
- Should have oscillation control
- Movement adjustment is also applied

Execution of VOR

75.7 % **\rightarrow** 89.2 % **\rightarrow** 95.6 %

Minimax algorithm

- Fix holes by moving closer to the farthest Voronoi vertex
- Choose the target location whose distance to the farthest Voronoi vertex

is minimized

Minimax algorithm

- Based on the belief that a sensor should not be too far away from any of its Voronoi vertices when sensors are evenly distributed
- Result in a more regular shaped Voronoi polygon

Execution of Minimax

 $75.5 \% \rightarrow 92.7 \% \rightarrow 96.5 \%$

Optimizations

- Initial deployment may form clusters
- Explode!

Simulation results

Randomly deployed: about 85 sensors are required to reach

98 % coverage

Simulation results

The proposed algorithms : only 40 sensors are needed to reach the same coverage

