QoS Control for Sensor Networks

R. Iyer & L. Kleinrock Dept. Computer Science UCLA

ICC'03

Introduction

- Study of QoS in sensor networks
- QoS def. in this paper: sensor network resolution
- Ideas
 - Use Gur Game, a mathematical paradigm
 - BS communicates QoS info. to sensors using broadcast channels
- Result: BS dynamically adjust the number of sensors being activated

Problem Statement

- QoS = sensor network resolution =
 optimal # of active sensors
- □Goals:
 - Maximize life time of sensors by turning off sensors
 - Have enough sensors active and report data
- ■Use Gur game control theory [13]

Gur Game

- ☐There are n players (sensors), none of whom are aware of others
- There's a referee (BS) who periodically polls for simplified information from each player
 - The referee asks each player to vote "yes" (power-up) or "no" (power-off) and he counts up each response (# of packets received from active sensors = # of active sensors)

Gur Game (cont'd)

- A reward probability r = r(k) is generated, k is the # of players who voted "yes"
- □A player is then rewarded (probability r) or penalized (probability 1-r) independently of their vote
- □Gur property: K* of players vote yes, K* is the max value of function of r(k)

Typical Reward Function

Gur game with memory

- How to achieve Gur property: by trial and error
- The player votes yes when he is in a positive numbered state, and no when he is in a negative numbered state
- "center seeking" behavior is for punishment, and "edge seeking" behavior is for reward.

Figure 2. Gur Memory of Size N=2.

Assumptions

- ☐ One BS + n sensors
- BS polls sensors once a second
- Each sensor Si is a distance di from BS
 - mean that a packet is sent reliably from Si to BS and takes di seconds to reach BS
- □ BS have a broadcast channel to all the sensors
- □ BS receives k packets at time t means that approximately k sensors are powered-on at time t

Results

□Will reach an equilibrium, K* sensors keep active until they use up all power

Simulation (simple case)

- \square Assume memory size N = 1
- □ 100 sensors as well as a BS
- No sensor failures or renewals
- Each sensor picks a random state as its initial state
- □ Assume # of optimum sensors = 35
- \square di = 1 sec (packet delay)

Simulation (simple case)

Simulation (realistic case)

- Allow the birth and death of sensors
- di is distributed uniformly from 0-5 secs
- Other parameters are the same as simple case

Simulation (realistic case)

Num Packets
Optimal

Time

Simulation (memory size)

Discussion

Apply math on sensor networks? (e.g. OR, Game Theory)