

Power Conservation and Quality of Surveillance in Target Tracking Sensor Networks

Chao Gui, Prasant Mohapatra Computer Science Dept. Univ. of California, Davis

Surveillance Sensor Networks

- Surveillance Sensor Network Application
 - Structure defect detection
 - Battle field surveillance
 - Forest fire detection
- A special case: Target Tracking Applications
 - After detection of a moving object, need to track the object's location in real-time

Target tracking with Sensor Network

- General problem statement
 - A varying number of targets
 - Arise at random in space and time
 - Move with continuous motions
 - Persist for a random length of time and disappear
 - Goal: For each target, find its track

Power Conservation in Surveillance Sensor Network

- Need to operate unattended, as long as possible
- Events occurrence
 - random sporadic,
 - long intervals of null state
- Sleeps during the null interval: save more power
- Two states for a sensor node:
 - Surveillance state
 - no events of interest in the field, but ready to detect any possible occurrences
 - Tracking state reacts in response to any moving target, sensors collaborate in tracking

Scope of This Work

- Study the trade-off between power conservation and surveillance
 - Define new metrics for Quality of Surveillance (QoSv)
- Analyze the various sleeping methods
- Novel transition scheme between two states

Quality of Surveillance (QoSv)

- Coverage-based QoSv metrics
 - P-coverage
 - α-coverage
- Not suitable for QoSv on mobile objects
 - Full coverage is not necessary for moving object
 - Coverage metrics do not measure QoSv directly

QoSv metrics: Ideal metric

• What is the distance traveled by the target remaining uncovered before it intersects with the sensing boundary of a sensor node?

Ideal metric:

$$QoSv(X) \equiv \frac{1}{L^*}$$

- L is the traveled distance in the previous question,
 L^{*}
 is expected value of
 L
- χ denotes the field of SN deployment

QoSv metrics: Workable metric

- Workable QoSv metric: ALUL(X)
 - Average Linear Uncovered Length (ALUL)
 - Assumption
 - Targets move continuously
 - Targets can only move for a short distance before being detected
 - A line segment can approximate the uncovered moving path

Workable QoSv metric: ALUL

• Definitions

 Linear Uncovered Length (LUL) at position x on direction θ – LUL(x, θ).

Workable QoSv metric: ALUL

• Definitions

- Linear Uncovered Length (LUL) at position x on direction θ – LUL(x, θ).
- Average Uncovered Length (ALUL) at position x – ALUL(x).
 - $ALUL(x_2) = 0$

Workable QoSv metric: ALUL

• Definitions

- Linear Uncovered Length (LUL) at position x on direction θ – LUL(x, θ).
- Average Uncovered Length (ALUL) at position x – ALUL(x).
 - $ALUL(x_2) = 0$
- Average Uncovered Length (ALUL) for field X – ALUL(X)

Approximation of ALUL(X)

 Theorem: For any straight line of length / in the field, the expected number of intersections the line with the disc

boundaries is

$$e = \frac{4 n \cdot \overline{r} \cdot l}{\|X\|}$$

- Proposition: For any straight line of length *I*, and let *e* be expected number of intersections within disc boundaries, *I/e* approximates ALUL(X).
- Conclusion:

$$QoSv(X) \equiv \frac{1}{ALUL(X)} \cong \frac{4n \cdot r}{\|X\|}$$

Chao Gui, Prasant Mohapatra

University of Calfornia, Davis

Experimental Result

Role QoSv Study

- QoSv study guides sensor deployment
 - Number of nodes
 - Distribution

Role of Sleep Planning

- Make spare nodes sleep
 - Over-deployment of sensor nodes
- Active nodes follow deployment guideline

Sleep Planning Methods

- Random Independent Sleeping (RIS)
 - Independent decide when to wake-up
 - Randomized schedule
- Neighbor Collaborative Sleeping (NCS)
 Collaborate on whose turn to be on duty
- Planned Distribution Methods
 - Use location info., make the active nodes distribute in a planned manner

Random Independent Sleeping

*

Alertness level

$$a = \frac{n}{N}$$

- Each node remain active for a percent of total time.
 - Timeslots
 - Within each timeslot, active for $a^{*}T_{slot}$
 - Randomized timeslot boundaries

Neighbor Collaborative Sleeping

• PEAS (Ye-2003), GAF(Xu-2001)

Revised PEAS

- Why revise
 - Once starts working, a node does not sleep
 - Goal: Nodes take turn for duty, balance energy consumption among all nodes
- PECAS Probe Environment and Collaborated Adaptive Sleeping

PECAS by example

Planned Distribution Methods: 2-D Mesh

- Only nodes at planned locations are active
- Use 2-D mesh for spatial pattern
- Parameters:
 - r: Sensing range,
 - I_G:Grid spacing,

Deterministic ALUL(X)

 Theorem: Let X be the monitored area of size L*L. The physical deployment of sensors is uniformly random distribution of adequate density. The distribution of active sensors follows the 2-D mesh planned pattern. Then, ALUL(X) is:

$$ALUL(X) = \frac{2}{\pi} \left(\left\lfloor \frac{L}{l_G} \right\rfloor \right)^2 \frac{(l_G - 2r - 2\delta)^3}{L^2}$$

Proactive Wake-up

- Two working states a each sensor node
 - Surveillance state (power saving state)
 - Tracking state
- Role of Proactive Wake-up
 - Change from power saving state to tracking state when target comes near
 - Change back to power saving state when target goes away

Layered node state distribution around the target

- Nodes in sleeping mode
- Nodes in prepare mode
- Nodes in tracking mode
- Nodes in subtracking mode

Performance Evaluation: QoSv

(a) QoSv using RIS.

(b) QoSv using PEAS and PECAS.

University of Calfornia, Davis

QoSv Comparison

Chao Gui, Prasant Mohapatra

University of Calfornia, Davis

Performance Evaluation

Performance Metric:

•total energy consumed

- •800 nodes,
- •transmission range = 55.9 m,
- •sensing range = 20m

Simulation Setup:

•target speed = 10 m/s

Performance Evaluation: Relative Energy Save

Conclusions & Future Work

- Contributions and Inferences:
 - Proposed and quantified a new metric of QoSv
 - Proposed and enhanced sleeping method PECAS
 - Sleeping methods can not only save power but also optimize sensor deployment
 - Proposed a new collaborative power saving approach for target tracking using state transitions
 - Could achieve significant energy savings
 - Location information can be used to achieve better sleeping
- Following Work
 - Extend our work to multiple targets
 - Use "virtual patrol" for better surveillance and sleeping