Responsibility Region Allocation for Dense Sensor Networks

1

Introduction

- Energy is a scarce resource for a sensor device
- A randomly deployed dense sensor network → many redundant nodes
- To conserve energy, previous research focuses on:
 - Turning off redundant nodes to prolong network lifetime
 - Aggregate same information to reduce the number of transmission

Previous Techniques

- Turning off redundant nodes
 - Unfortunately the overlapped area may still be considerable
 - Turning off some nodes may result in isolated subnetwork

Previous Techniques

Data aggregation

- To reduce the number of packet transmission
- However, the aggregation node may be far away from event-triggered nodes
- Cost of tree, or graph, construction
- Aggregation overhead increases packets delay

Data Aggregation Tree

Previous Techniques

Motivating Example

Each sensor is in charge of one specific region

Motivation

- Each sensor has an unique guarding zone
 - To minimize redundant triggers
 - To decrease packet delay
 - To conserve energy
 - Less transmission less energy consumption
 - To alleviate packet collision

How to allocate responsibility regions?

- The responsibility region can be any irregular shape
- Voronoi Diagram
 - Need to know the event location in advance
- Assume that we only know event distance
 - Associate each sensor with a responsibility radius
 - sensor reports e if e is within responsibility radius

A shrinking example

Original

Adjusted

Assumption

- Sensing radii of sensors are identical
- Sensor's location is known
- Event distance can be estimated by evaluating event strength

Requirement & Criterion

- Sensors can self-organize their specific responsibility region based on their local states
- No event loss
- Size of responsibility region should be related to remaining energy of sensors.

Problem Definition

- Definition (Responsibility radius), Rg:
 - a virtual sensing radius of a sensor, i.e., events beyond Rg should be ignored by that sensor.
- We are given a sensor network S = {s1, ..., sn}, deployed over a two-dimensional area A and associated with an initial Rg vector (Rg¹, Rg²,...,Rgⁿ). We want to find a new Rg vector, say R'g, such that the aforementioned requirement is met.

Token-based basic algorithm

- Rg^i is divided into *x* segments.
- To avoid collision, sensors randomly start and broadcast a message to indicate getting the token
- Let $\delta_i = \operatorname{Rg}^i / x$. Sensor who gets token shrink δ_i once at a time if the new Rg do not make any coverage hole.
- After shrinking, broadcast a message to indicate releasing the token.
- The basic algorithm terminates if no sensor can shrink anymore.

1-perimeter-covered (circle)

1-perimeter-covered (irregular shapes)

Token-based greedy algorithm

- Sensors who get token execute the following steps:
 - Eliminate sensors which do not contribute coverage
 - Calculate rmin, choose appropriate r' value.
 - R'g = r'
 - Broadcast a message to release token

Virtual force-based algorithm

- Faster than token-based algorithms
 - All sensors can run at the same time
- A sensor responsibility radius is like a rubber band
 - Fin: contraction force = Rg square
 - Fout: neighbors' pulling force, related to neighbors' distance and neighbors' Rg
- Let Fin = Fout \rightarrow get new Rg

Discussion

- With sensor location and event location
 - Voronoi Diagram
 - Difficult to retrieve event location info.
- Without sensor location
 - Modified PEAS (Probing Environment & Active Sleeping)
 - Some events may lose
- With Sensor location and event strength
 - reasonable scenario
 - With event strength, sensors can estimate the distance of the event