Janos: A Java-Oriented OS for
Active Network Nodes

Patrick Tullmann, Mike Hibler, and Jay Lepreau
IEEE JSAC, March 2001

2002/10/24

-~ Outline

Introduction
Goals

Design

— Moab

— JanosVM
— ANTSR

Results
Discussion
Conclusion

Introduction (1/2)

e Java-oriented Active Network Operating
System

 Emphasis on resource management
and control of untrusted active
applications written in Java

o Active node’s software architecture:
— NodeOS
— Execution Environment (EE)
— Active Application (AA) layer

Introductlon (2/2)

Aclive

e L) x| | s

--
L Le e I --I.I---I- ---

:.:: :..:I.:::.:I.llll.:.:.:.:.:. :.:.:.:.:.:.:.:.:.:.:. :.:.:.:. '|'] ._ .. wl :.:.'.:.:. :.:.:.:.

i |
———

:. : :. -.' -.'!'. et e] ':'. '.-:'. S i ':'. S '. i ':'. L1t '. T L '. L. ':-. . '. 1.0, ':' E:I:EI:I_lti:]n
. 28005 Java NodeOS Bindings | Envircnment
. JanosVirtualMachine. . |J (B

SRS R] NodeOS

-~ Goals (1/2)

e Untrusted code support

— Execution of untrusted java code carried by
the users’ packets

 Resource management

— Memory
- CPU
— Outgoing network bandwidth

-~ Goals (2/2)

e Performance

e Separable components

— Not only make the components optimized
to work together, but also useful
iIndependently

Design: Moab (1/3)

NodeOS built upon the OSKit

OSKit Is a collection of device driver, POSIX
APIls, filesystems, and network protocols

POSIX (Portable Operating System Interface
for UNIX)

POSIX-reliant systems can be migrated to
Moab easily

Design: Moab (2/3)

Host for a single trusted EE

Resources are specified precisely In
term of the local node’s hardware

Allow EE to perform memory
management

A packet buffer is used for storing
Incoming packets

Design: Moab (3/3)

e User can manage CPU usage within a
domain

A domain, similar to a process in a
traditional OS, Is the unit of resource

control

Design: JanosVM (1/3)

A virtual machine that accepts Java
bytecodes and execute them on Moab

* Provides access to the underlying
NodeOS interface through the Janos
Java NodeOS bindings

 Based on KaffeOS, a JVM that provides
the abllity to isolate apps from each
other and to limit their resource
consumption

Design: JanosVM (2/3)

o Supports multiple, separate heaps,
separate garbage collection threads for
each heap, per-heap memory limits

o Strict separation of domains, each
domain runs in its own namespace and
In its own heap

Design: JanosVM (3/3)

* Provide a library for mapping platform
Independent resource specification into
Moab’s hardware-specific specifications

Design: ANTSR

Java runtime library based on ANTS 1.1

Provides interfaces for untrusted,
potentially malicious, AAs to interact
with the system

Hides critical JanosVM interface from
the AAS

Specifies per-domain resource limits

<" Results (1/2)

TABLE |
PACKET FORWARDING RATES AT VARIOUS LEVELS 1N MoaR, IN THOUSANDS
OF PACKETS PER SECOND,

Forwarding Path Rate (Kpps)
OSKit 75.7
Moab cut-channel 48.7
C-based EE on Moab 45.0
Java-based EE on Moab 19.5

“__ Resdlts (2/2)

TABLE 1l
RELATIVE OUTPUT BANDWIDTH USAGE FOR RESOURCE LIMITED
OUT-CHANNELS TRYING TO INDEPENDENTLY SATURATE A SINGLE PHYSICAL
LINE. THE MEASURED THROUGHPUT |s REPORTED IN BYTES PER SECONID.

Share | Measured throughput (Bps)

1 2,053,608
2 4,094,836
3 6,145,442

Discussion

e Java’s performance is not good enough

— JIT (Just-in-time) compilation can be used
— Cross-platform

e Real-time traffic Is not a concern In
Janos yet

e Multitasking issue

Conclusion

 To provide comprehensive, presice
resource control over the execution of
untrusted Java bytecode

* To provide services and features Iin the
appropiate layer, without overlap

	Janos: A Java-Oriented OS for Active Network Nodes
	Outline
	Introduction (1/2)
	Introduction (2/2)
	Goals (1/2)
	Goals (2/2)
	Design: Moab (1/3)
	Design: Moab (2/3)
	Design: Moab (3/3)
	Design: JanosVM (1/3)
	Design: JanosVM (2/3)
	Design: JanosVM (3/3)
	Design: ANTSR
	Results (1/2)
	Results (2/2)
	Discussion
	Conclusion

