MultiNet: Connecting to Multiple IEEE 802.11 Networks Using a Single Wireless Card

INFOCOM 2004

徐延源 2004/2/24

Outline

- Introduction
- MultiNet
 - Virtualization Architecture
 - Buffering Protocol
 - Switching Algorithms
 - Synchronization Protocol
- Implementation
- System Evaluation
- Discussion
- Conclusion

Introduction

- A Microsoft research project
- Virtualization architecture that abstracts a single WLAN card to appear as multiple virtual cards to the user
- MultiNet permits simultaneous connectivity to multiple networks with only one WLAN card
 - Multiplexing the wireless card across multiple networks

Introduction

- When connected to multiple networks:
 - Concurrent connectivity
 - Network elasticity
 - Gateway node
 - Virtual machines
- Why not multiple physical cards?
 - Excessive energy drain

MultiNet Virtualization Architecture

- MultiNet Protocol Driver (MPD) is placed as an intermediate layer between IP (layer 3) and the MAC (layer 2)
- The WLAN media adapter is exposed by the MPD as multiple always active virtual WLAN media adapters
 - Actually only one adapter is active at driver level at any given moment
- MPD is responsible for switching across different networks and buffering

MultiNet Virtualization Architecture

Modified network stack

- Packets sent from the MultiNet card
 - If the adapter i is going to send a packet and adapter i is active at driver level then packet will be sent
 - Otherwise the packet will be buffered until the adapter i is active

- Packets sent to the MultiNet card
 - If in network i a node x is sending a packet to a MultiNet node y, and y's adapter i is active, then y will receive the packet
 - Otherwise x will buffer the packet until y switches back to network i

- APs and nodes store state info of nodes connected to them
 - The state info tells when the node will switch back to the network
- Buffering on 802.11 APs
 - Use Power Saving Mode (PSM)

Buffering in MultiNet

MultiNet Switching Algorithms

- Activity Period: the time a node stay in a particular network
- Switching Cycle: the sum of all Activity Periods of a node
- Switching algorithms:
 - Fixed Priority
 - Adaptive Schemes
 - Adaptive Buffer
 - Adaptive Traffic

MultiNet Synchronization Protocol

- No synchronization problem in infrastructure mode
- In Ad Hoc network:
 - Two nodes that want to communicate may never be in the same network at the same time → no overlap exists
 - Synchronization is needed for the overlap
 - Every node in ad hoc network synchronizes with the leader node
 - Leader node: node with largest MAC address

Implementation

- No modification is needed for wired nodes
- No modification is needed for APs (by using PSM)
- Modifications are transparent to layers above IP (layer 3)
- Already implemented on Windows XP for over 12 months

Implementation

 Delay of the switch between infrastructure and ad hoc networks

Switching From	Unoptimized Legacy	Optimized Legacy	Optimized Native WiFi
IS to AH	3.9 s	170 ms	25 ms
AH to IS	2.8 s	300 ms	30 ms

- Legacy cards: all functions are stored in the microcontroller (firmware)
- Native WiFi cards: only minimum time-critical MAC functions are stored in the firmware, leave the rest to the OS

System Evaluation

 Energy consumption between MultiNet and multiple radios

Throughput in infrastructure and ad hoc networks

1.1 Mbps 4.35 Mbps

Average packet delay in infrastructure mode

Scheme	Avg Delay (in Seconds)	
Two Radio	0.001	
MultiNet	0.157	
Two Radio PS	0.156	
MultiNet PS	0.167	

Discussion

- Reducing the switching overhead
- Security
- Performance in ad hoc network
- Single hop vs. multihop

Conclusion

- A new virtualization architecture which allows user to connect to multiple wireless networks simultaneously
- Only a little change to MN is needed, and no changes to current apps and protocol like TCP/IP
- MultiNet enables a framework for the design of a new class of systems and applications