Design and Performance Evaluation of an Improved Mobile IP Protocol

INFOCOM 2004

徐延源 2004/4/15

Outline

- Introduction
- Mailbox-based Scheme
 - Migrating
 - Packet forwarding
- Performance Evaluation
 - System model
 - Evaluation results
- Conclusion

Introduction

- Mobile IP
 - Provides mobility support in the Internet
 - Binding between home address and care-of address
 - Triangle routing problem
 - Route optimization
 - Smooth handoff
 - Binding between new Foreign Agent (FA) and previous FA to avoid packet loss

Introduction

- Problems of Mobile IP
 - The Home Agent (HA) needs to be notified of MN's every location change. The route optimization further requires the Correspondent Node (CN) to be notified
 - Mobile IP suffers slow handoff since the HA has to handle all handoffs
 - Massive signaling traffic between the MN and the HA may congest the network

Mailbox-based Scheme

- Mobility Agent (MA): HA and FA
- Every MN is associated with a mailbox, which is a data structure residing at a MA

Mailbox-based scheme illustration

Mailbox-based Scheme

- When the MN moves to a new FA:
 - Old FA decides whether to move the mailbox to the new FA, considering following factors:
 - The distance to the new FA (d)
 - The communication traffic of the MN (n)
 - Threshold (d;n) is used to determine the mailbox's migration
 - When distance exceeds d or communication traffic exceeds n, the mailbox will migrate to the new FA

Mailbox-based Scheme

- Local handoff: handoff without mailbox
- Home handoff: handoff with mailbox
 - Threshold (d;n) will be recalculated after home handoff

Address table

Home Addr	Mailbox's Addr	Valid Tag	Threshold Pair	Pointer to Mailbox	Care-of Addr
Addr A	Remote Address	true	Null	Null	Null
Addr B	Local Address	true	(d; n)	A Pointer	Addr C

Mailbox-based Scheme Migrating

Message exchange in registration

Mailbox-based Scheme Packet forwarding

- When a CN wants to send a packet to a MN:
 - Check binding cache
 - If address cached then tunnel the packet to the cached address
 - Otherwise send the packet to MN's home address
 - MN's HA will intercept the packet

Mailbox-based Scheme Packet forwarding

Decision tree when receiving a packet

System model

Mobile Network

Random walk model

Directional walk model

Mailbox-based Mobile IP

Mobile ID with route entimization and emooth handoff

Signal cost per migration

Packet forwarding cost

Total cost

Conclusion

- A mailbox-based scheme to improve Mobile IP's performance
 - Reduce workload on the HA
 - Reduced packet loss
 - Fast handoff
 - Per-user-based adaptive location management
 - Dynamic tradeoff between the packet delivery cost and the registration cost