VoIP Over 802.16e

張佑竹 12/16

Oulines

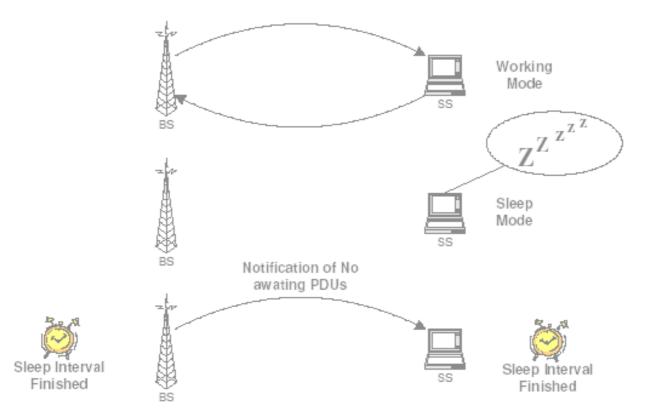
- Introduction
- Extended rtPS for VoIP Services
- Performance Analysis
- Conclusion
- References

• Mobility Support Features:

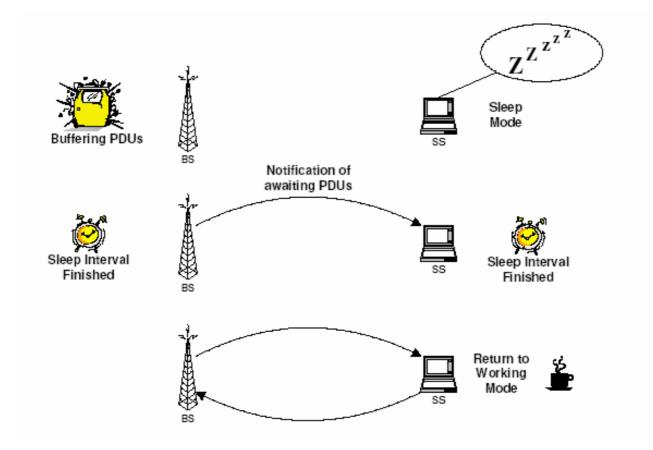
- Licensed Band Only: 2 to 6 GHz
- Handoff: HO, SHO, FBSS (Fast BS Switching)
- BS Classifications: Neighbor, Serving, Target, Active
- Active Set: List of BSs available to MS, maintained by BS and MS
- The BSs arranged in geographically contiguous paging groups
- Network Topology Advertisement: Each BS transmits its own and neighbor's channel info.

• Improved PHY and MSS Features

- Low Density Parity Check Codes(Error-Correcting Codes) at the Physical Layer
- Enhanced MIMO setup functions
- New States for MS operation: Sleep Mode (reduces MS power, and optimizes BS air interface capacity), Parameter defined Power Saving Classes of Mobiles
- Enhanced FFT sizes for Scalable OFDMA: 2048, 1024, 512, 128 Bandwidth flexibility

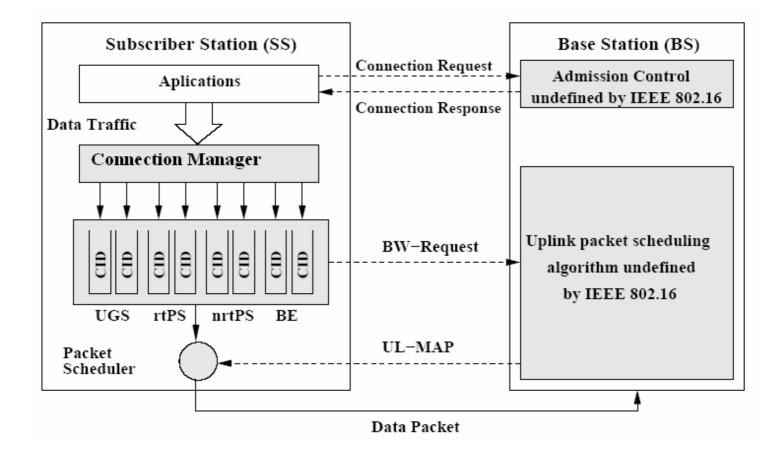

• MAC and QoS Features:

- Global Service Flows defined for operation over varying topologies with mobility
- 4 New MAP headers defined to help in PHY Channel reporting, feedback, combined
- bandwidth-power requests ...
- QoS ErtPS: The ErtPS adds to rtPS support real-time service flows that generate variable size data packets on a periodic basis, e.g.VoIP with silence suppression.


• Service Features:

– Enhanced Multicast Broadcast Service

example of the Sleep Mode


example of the Sleep Mode

4 types of Scheduling Service in 802.16-2004

- Unsolicited Grant Service (UGS)
- Real-Time Polling Service (rtPS)
- Non-Real-Time Polling Service (nrtPS)
- Best Effort Service

QoS architecture of IEEE 802.16

Real-Time Service Flows

• Unsolicited Grant Service (UGS):

- Supports real-time traffic (Voice over IP).
- Offers fixed size unsolicited data grants (transmission opportunities) on a periodic basis.

• Real-Time Polling Service (rt-PS):

- Supports real-time flows that generate variable size data packets on a periodic basis (MPEG).
- Offers periodic unicast request opportunities. The SSs specify the size of the desired data grants.

Non Real-Time Service Flows

- Non Real-Time Polling Service (nrt-PS):
 - Supports flows that require variable size data grants on a regular basis (high bandwidth FTP).
 - Offers infrequent unicast polls plus contention and piggybacking.
- Best Effort (BE):

– The SS uses contention and piggybacking only.

802.16-2004 real-time services

- There are two scheduling types for real-time services in IEEE 802.16-2004
 - UGS
 - rtPS.
- However, UGS and rtPS are not efficient in supporting VoIP service because these methods don't consider ON/OFF property of voice traffic.

Problems

- In case of UGS, the BS always assigns fixed-size grants that are sufficient to send voice packets.
 - This method causes a waste of uplink resources, especially in silence - off - duration.
- In case of rtPS, the SSs comply with a bandwidth request process polling process
 - the polling process always causes unnecessary MAC overhead and access delay.

• This document* propose an efficient uplink scheduling method considering the voice on/off property for VoIP services and add changes that let the scheduler know codec type and coding rate.

- Firstly, the SS informs the BS of its voice status information using Grant Management subheader in case that the size of the voice data packet is decreased.
- Secondly, the SS informs the BS of its voice status information using Bandwidth request header in case that the size of the voice data packet is increased.

• In this case, the BS assigns uplink resources according to the requested size periodically, until the SS requests another size of the bandwidth.

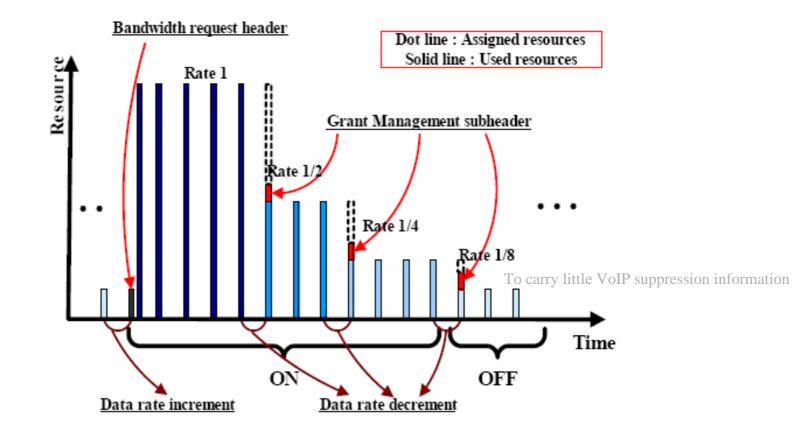


Fig. 1 Operation of the proposed method

Performance Analysis

• A voice codec characteristic parameter and a voice on/off duration can be shown in Table 1 and Table 2, respectively.

Table 1 Example of voice codec parameter

	Frame Size (ms)	Data Size (bits)	
		Talk-spurt	Silence
TIA-IS-127 (EVRC)	20	171 (Rate 1, 29%)	16 (Rate 1/8, 60%)
		80 (Rate 1/2, 4%)	
Enhanced Variable Rate Coder		40 (Rate 1/4, 7%)	

Table 2 Example of Voice on/off duration

Talk-spurt (on) Duration (ms)	0.352	1.
Silence (off) Duration (ms)	0.650	12

1s ON 1.35s OFF

UGS

Average assigned uplink resources / voice codec frame / user = (171 bits + 48 bits (Generic MAC header size)) * 100% = **219 bits/frame/user**

rtPS

• Average assigned uplink resources / voice codec frame / user

= (171 bits + 48 bits (Generic MAC header size))
* 29% + (80 bits + 48 bits (Generic MAC header
size)) * 4% + (40 bits + 48 bits(Generic MAC
header size)) * 7% + (16 bits + 48 bits (Generic
MAC header size)) * 60% + (16 bits + 48 bits) *
40% (Polling size in talk-spurt (on) duration)
= 138.79 bits/frame/user

• Average assigned uplink resources / voice codec frame / user

= (171 bits + 48 bits (Generic MAC header size)) * 29% + (80 bits + 48 bits (Generic MAC header size)) * 4% + (40 bits + 48 bits (Generic MAC header size)) * 7% + (16 bits + 48 bits (Generic MAC header size)) * 60%

= 113.19 bits/frame/user

Average assigned uplink resources

Table 3 Average assigned uplink resources

	Average assigned uplink resources / voice codec frame (MAC frame) / user
UGS	219 bits/frame/user
rtPS	138.79 bits/frame/user
Proposed method	113.19 bits/frame/user

Compared with UGS and rtPS

Table 4 Average saved resources compared with UGS

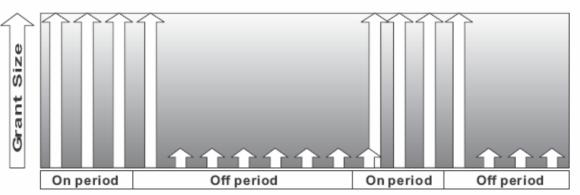

	Average saved resources in our proposed method / voice codec frame (MAC frame)	
User	Downlink (bits/frame)	Uplink (bits/frame)
1	0	105.81
10	0	1058.1
20	0	2116.2
30	0	3174.3
40	0	4232.4

Table 5 Average saved resources compared with rtPS

	Average saved resources in our proposed method / voice codec frame (MAC frame)	
User	Downlink (bits/frame)	Uplink (bits/frame)
1	36	25.6
10	360	256
20	720	512
30	1080	768
40	1440	1024

Conventional Algorithm

- Two type bandwidth allocation ON/OFF.
 - Don't need the Grant Management subheader
 - Used the reserved bit
 - ON 1
 - OFF 0

Operation of BS according to GM bit in proposed algorithm

Conclusion

- Voice + Data
- Flexible Resource Allocation

References

- Extended rtPS for VoIP services:IEEE 802.16 Broadband Wireless Access
 Working Group
- An enhanced uplink scheduling algorithm based on voice activity for VoIP services in IEEE 802.16d/e system Howon Lee; Taesoo Kwon; Dong-Ho Cho; Communications Letters, IEEE Volume 9, Issue 8, Aug 2005 Page(s):691 - 693 Digital Object Identifier 10.1109/LCOMM.2005.1496584
- REVIEW OF EXISTING MOBILE BROADBAND WIRELESS ACCESS (MBWA) TECHNOLOGIES(IEEE 802.16 AND IEEE 802.20)

Thikrait Al Mosawi

Supervised by Professor Hamid Aghvami

November 2004

References

 Bluetooth/WiFi/WiMAX Communications Zulfiquar Sayeed Bell Labs Lucent Technologies