A Wireless MAC Protocol Using Implicit Pipelining

Xue Yang, Member, IEEE, and Nitin H. Vaidya, Senior Member, IEEE

Presented by Richard Chang 03/02

Outlines

- Introduction
- Pipelined packet scheduling
- Pipelined dual stage contention resolution MAC protocol(DSCR)
- Performance evaluation of DSCR in wireless LANs
- Performance evaluation of DSCR in Multi-hop wireless networks
- Conclusion

Introduction

Issues

- Two categories of overhead are usually associated with contention resolution.
 - One is channel idle overhead, where all contending stations are waiting to transmit.
 - Another is collision overhead, which occurs when multiple contending stations attempt to transmit simultaneously.

Goal

- Improving performance of MAC protocols
 - To reduce the channel *IDLE* and *COLLISION* overhead

Ideas

- Pipelining
 - Two stage pipeline:
 - 1. Contention Resolution
 - 2. Packet Transmission

Pipelined packet scheduling

RTS/CTS access method of IEEE 802.11 DCF

Fig. 2. RTS/CTS access method of IEEE 802.11 DCF.

Partial pipelining scheme

Fig. 3. Partial pipelining scheme.

Benefits of Partial Pipeline

- Only winners of stage 1 can contend channel in stage 2
 - reduces the data channel contention
 - reduces collision probability on the data channel

Performance of partial pipelining with and without busy tone detection

Fig. 4. Performance of partial pipelining with and without busy tone detection (packet size: 512 bytes).

Pipelined dual stage contention resolution MAC protocol(DSCR)

Implicitly pipelined packet scheduling.

Fig. 5. Implicitly pipelined packet scheduling.

Contention Resolution Algorithm

- bc1:is associated with contention resolution phase 1. bc1 is chosen to be uniformly distributed over the interval [0, CW1].
- bc2:is associated with the contention resolution phase 2. Whenever bc2 reaches zero, a transmission is allowed.
- F:a contending station reduces its bc1 by a quantity named $F.F = 2^{tc} 1$
 - tc: where tc represents the number of successfully transmitted packets overheard by the contending station ever since the most recent time it enters stage 1.

An example for the dual stage contention resolution of DSCR

Fig. 6. An example for the dual stage contention resolution of DSCR (time axis is not drawn to scale).

A single flow.

Fig. 7. A single flow.

Dynamic feedback of DSCR.

Fig. 8. Dynamic feedback of DSCR.

Implicit Pipelining

- Advantages compared with "partial pipelining"
 - No busy tone channel is needed
 - Can be applied to multi-hop ad hoc networks
- Disadvantage compared with partial pipelining
 - More stations may win stage 1, which leads to degraded stability in large networks

Improved Channel Utilization Payload size: 512B

Improved Packet Access Delay

Improved Access Energy Efficiency

Average number of pipelined stations

Number of Collisions Encountered

Payload size: 512 B, RTS/CTS access method

Contending Stations (N)

One random multihop network

Fig. 13. One random multihop network.

Throughput ratio of "implicit" pipelining over 802.11

Conclusion

Conclusion

- pipelining techniques can be useful in improving the performance of multiple access control protocols.
- Multi-Channel
 - Choice Channel
 - Pipelining Schedule

Multi-Channel

Reduce Collision