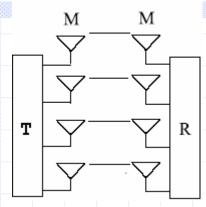
CD-MAC Cooperative Diversity MAC for Robust Communication in Wireless Ad Hoc Networks

ICC2007

Sangman Moh (Chosun University, Korea); Chansu Yu (Cleveland State University, USA); Seung-Min Park (ETRI, Korea);


Heung-Nam Kim (Electronics and Telecommunications Research Institute, Daejeon, Korea); and Jiwon Park(Chosun University, Korea)

Presented by Yu-Chu Chang December 27, 2007

Outline

- Introduction
- Related Work
- Cooperative Diversity MAC
- Performance
- Conclusion

- In wireless ad hoc networks, signal fading and interference are two major obstacles in realizing their full potential in delivering signals.
- Cooperation among the nodes is considered critically important in addressing these problems.

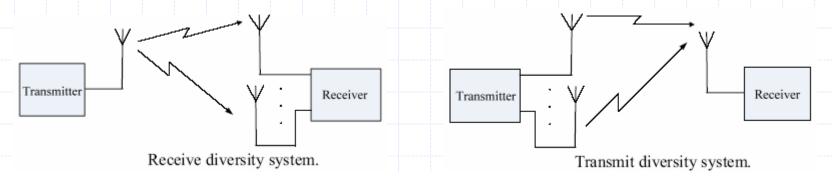
- Diversity techniques such as co-located antenna array can mitigate the interference problem by transmitting redundant signals over essentially independent channels.
 - But it may not be always feasible in practice for each node to have multiple antennas.
- Recently, a new class of diversity techniques called cooperative diversity has been proposed, in which distributed radios interact with each other to jointly transmit information exploiting diversity offered by multiple users.

- Cooperative communication exploits diversity offered by multiple users, known as cooperative diversity
 - Improve the *bit error rate* (*BER*)
 - More reliable transmission
 - higher throughput
- ❖ It is important to note that the primary motivation of cooperative diversity is to improve *link* reliability over wireless fading channels rather than lengthen the transmission range

- There are two types of cooperative diversity algorithms:
 - repetition-based
 - the sender broadcasting its transmission both to its receiver and potential relays (or partners)
 - these relays repeating the sender's message individually on orthogonal channels.
 - space-time-coded
 - all the relays *transmit simultaneously on the same channel* using a suitable coding scheme such as *orthogonal distributed* space-time code (DSTC)

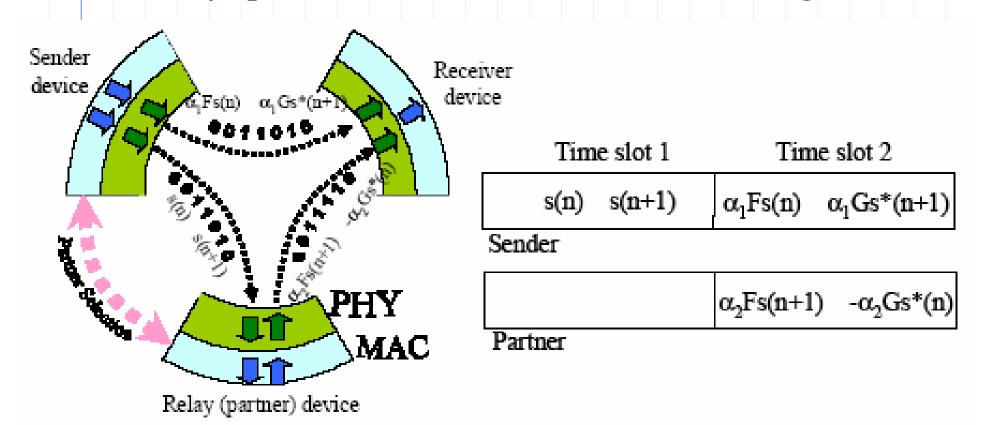
- This paper presents a MAC layer protocol, called *cooperative diversity MAC (CD-MAC)*, that exploits the cooperative communication capability in wireless ad hoc networks
 - Operate on a single channel
 - Use a single relay (partner)
 - A key element of the CD-MAC is the selection of relay
 - Assume that radio hardware supports cooperative space-time coding (STC)

Related Work


- Cooperative Diversity
- Cooperative Diversity in Wireless Ad Hoc Networks

Cooperative Diversity

- Several cooperative signaling or relaying methods have been studied, there are two well-known techniques, called repetition-based cooperative algorithms:
 - Amplify-and-forward
 - Decode-and-forward
- The corresponding benefits come at a price of decreasing bandwidth efficiency because each relay requires its own channel for repetition


Cooperative Diversity

- ◆ For realizing cooperative diversity while allowing relays to transmit on the same channel, orthogonal distributed space time coding (DSTC) has been studied, DSTC is a distributed multi-user version of STBC.
- Historically, space-time coding (STC) and spacetime block coding (STBC) were initially developed to offer transmit diversity in multi-antenna systems

Distributed space-time coding

Consider a simple three-node example with sender, relay (partner) and receiver devices as in Fig. 1.

Cooperative Diversity in Wireless Ad Hoc Networks

- Distributed Automatic Repeat Request [10](Kojima et al.)
- Cooperative MAC (C-MAC) and the corresponding routing protocols for wireless ad hoc networks[11] (Azgin et al.)
- A MAC protocol that supports the virtual MISO and multiple relays[12] (Jakllari et al.)

- Single-channel
- Cooperative diversity via DSTC
- Two-node cooperation
- Four-way Handshaking of CD-MAC
- Relay Selection

- The proposed CD-MAC is based on Distributed Coordination Function (DCF) of IEEE 802.11 standard.
- ♦ If a primary link imposed by the upper layer routing protocol is reliable enough to successfully transmit packets, the conventional MAC (i.e., DCF) is used and no cooperative transmission is enabled.
- ◆ If it fails, however, the sender retransmits the packet but cooperatively with its relay.

- ♦ Node *i* transmits its packet to the next hop node *j* over the primary link.
- \bullet If it fails, node i and its relay ri retransmit the packet cooperatively.
- Note that the relay *ri* decodes the packet received from the sender *i* in time slot 1, encodes it using DSTC, and transmits in time slot 2
- ♦ Likewise, the node j transmits its packet (e.g., ACK) to node i cooperatively with its relay rj.
- A sender and a relay transmit the exactly same copy at the MAC layer while they are different at the physical layer as they use space-time block code.

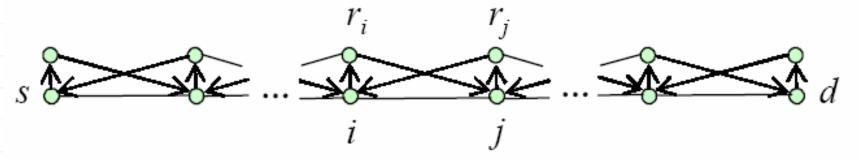
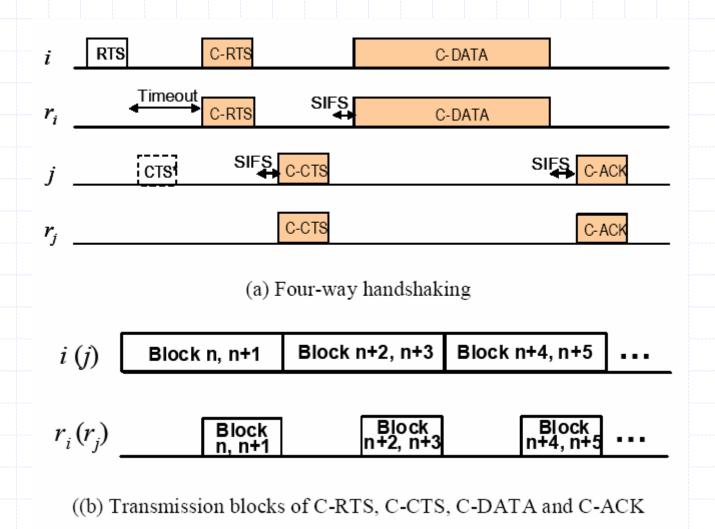
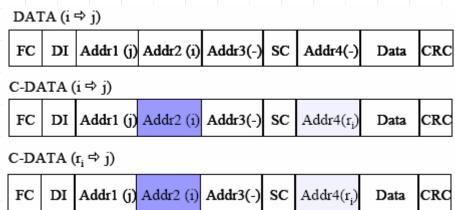



Fig. 2. Cooperative transmission with relays along a routing path.

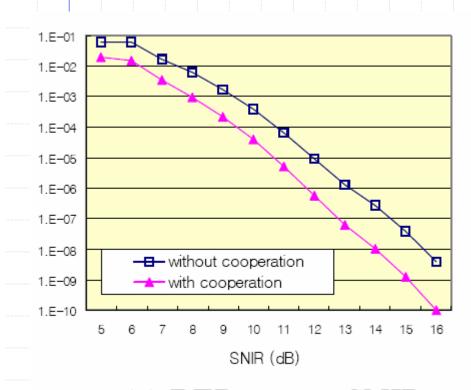


Relay Selection

- To exploit cooperative transmission in CD-MAC, every node proactively selects its relay by monitoring or overhearing its neighbors with respect to *link quality*. The one with the best quality is selected as its relay.
- Note that metrics that can be used to indicate link quality are distance, load, interference level, signal strength (SS) and signal-to-interference plus noise ratio (SINR)

Relay Selection

- ◆ If a node receives a frame, it measures and records the link quality between itself and the transmitter.
- And, it looks up the neighbor table and selects a neighbor with the maximum link quality among all neighbors as its relay.
- When it has a packet to send (DATA or C-DATA) or needs to send its own hello packet, it includes its selection in Addr4


Performance

- Reception Model
- Simulation Environment

Reception Model

- The signal reception model implemented in ns-2 network simulator is based on three fixed thresholds, *i.e.*, *carrier sense threshold* (CSThresh), *receive threshold* (RxThresh) and *capture threshold* (CPThresh).
- To consider *bit error rate* (*BER*) when determining the success or failure of a received signal.
 - Compute SINR
 - Look up the BER-SINR curve to obtain BER
 - Calculate frame error rate (FER) and determine whether to receive or drop the frame

BER versus SNIR

1.E-01

1.E-02

1.E-03

1.E-04

1.E-06

1.E-07

1.E-08

5 6 7 8 9 10 11 12 13 14 15 16 SNIR (dB)

(a) BER versus SNIR

(b) FER versus SNIR

Simulation Environment

- 50 mobile nodes move over a square area of $300 \times 1500m2$
- Source-destination pairs are randomly selected
- ◆ Random waypoint model with the node speed of 0 ~ 5 m/sec and pause time between moves varies from 0 to 900 seconds.

Packet delivery ratio.

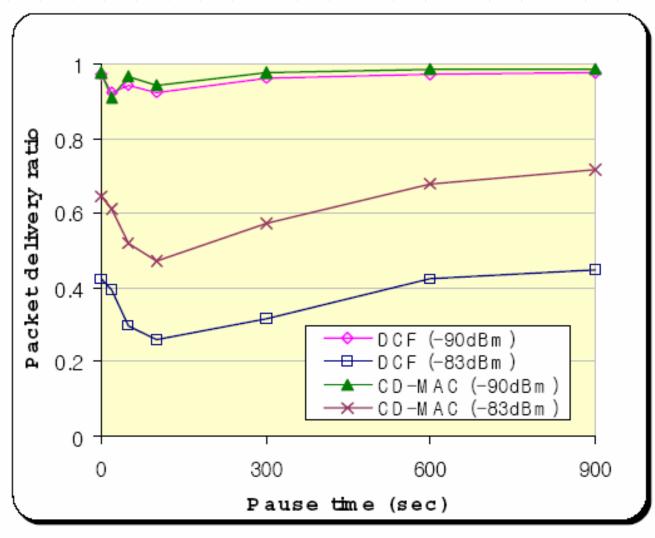


Fig. 4. Packet delivery ratio.

Route discovery frequency.

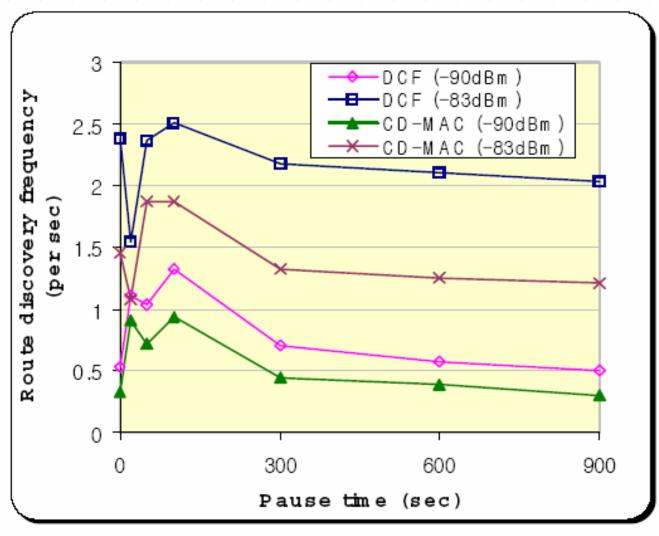


Fig. 5. Route discovery frequency.

Cooperation ratio

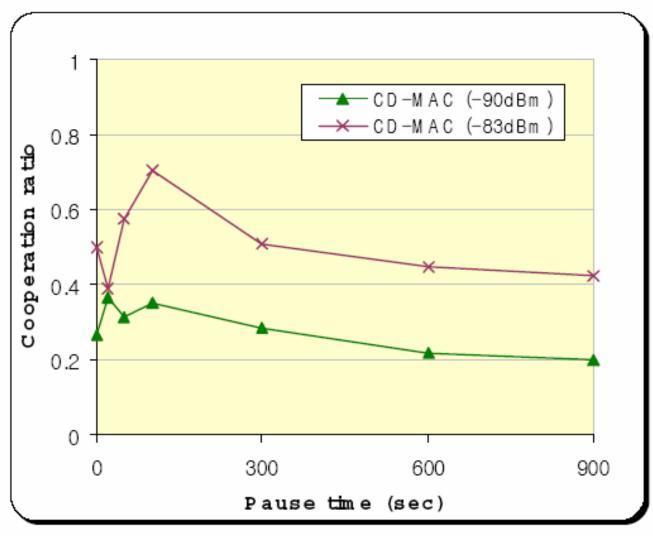


Fig. 6. Cooperation ratio.

Conclusion

- This paper proposes *cooperative diversity MAC* (*CD-MAC*) and discusses design issues and performance benefits in wireless ad hoc networks.
- The proposed CD-MAC is designed based on the IEEE 802.11 standards and does not require any changes in frame formats, making it amenable to immediate implementation.
- For accurate performance study, this paper developed a realistic reception model based on BER and FER, which are derived from Intersil radio hardware specification.