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Introduction

o Sensor nodes are typically of small
physical dimensions and operated
by battery power, making energy
consumption a major concern.

o The topic of energy-aware routing
to alleviate energy consumption in
sensor networks has received
attention recently.
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Introduction

o Here we assume )
sensor network
architectures having
two types of node:
sensor nodes and
data-gathering nodes. |l -

s s
=l J
‘ ‘ s data
T.'!.ll:i Crithering ."-.'|||||'
4

2003/10/01 I-Tsung Shen, MNet Lab



Introduction

O Since dense sensor networks are
particularly rich in correlations, the
authors judiciously exploiting existing
sensor data correlations in a distributed
manner.

o Furthermore, compression can be effected
In a fully blind manner without the sensor
nodes ever knowing what the other
correlated sensor nodes have measured.
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Introduction

o Main challenges

Sensor nodes: devising a computationally
Inexpensive encoder that can support
multiple compression rates.

data-gathering nodes: determining an
adaptive correlation-tracking algorithm
that can continuously track the amount of
correlation that exists between the sensor
nodes.
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Distributed Compression

o One sensor send its data Y to the data
gathering node.

o The other sensor compress it data X and
then transmit compressed data m to the
data gathering node.

o Data gathering node can use Y to decode
m to X since Y iIs correlate to X.
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Distributed Compression

o The compression rate is directly dependent
on the amount of correlation in the data,
which might be time-varying.

o It 1s desirable to have one underlying
codebook that is not changed among the
sensors but can also support multiple
compression rates.

o Tree-based distributed compression code
was proposed.
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Distributed Compression

o Assume the sensor uses an n-bit A/D
converter, We start with a root
codebook that contains 2"
representative values on the real axis.

o Partition the root codebook into two
subsets.

o This process iIs repeated n times,
resulting in an n-level tree structure
that contains 2" leaf nodes,
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Distributed Compression
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Distributed Compression
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o The encoder will receive a request from
the data gathering node requesting that it
encode its readings using i bits.

o The path through the tree to level-i sub-
codebook will specify the bits that are
transferred to the data gathering node.

o The decoder will receive the I-bit value,
then decode with side-information, Y.
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Distributed Compression

o Since Y is less BT S
than 2i-1A away LA EERAEAREELELL
from X, where A is “ |
the spacing in the o |
root codebook, 90000000 000008
decoder can YAN
recover X perfectly. & \ 4
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Correlation Tracking

o In practice, we choose to use a linear
predictive model where Y, 0 is a linear
combination of values that are available at
the decoder:

Y9 = Zn X 4 Z B; X

fam]

o The prediction, Y, 0 | determines the
number of bits needed to represent X, ) .

o Thus, the main objective of the decoder is
to derive a good estimate of X, 0 .
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Correlation Tracking

o we would like for the decoder to be able to
find the prediction coefficient q,; | =
1, ...,Mand 3;; 1 =1, ...,J—1 that minimize
the mean squared error between Y, and
X, )

o Finally we can solve the optimal coefficient
factor I; as follow:

—
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Correlation Tracking

o The coefficient factor I; must be continuously
adjusted to minimize the mean-squared error
since the statistics of the data may be time
varying.

o Thus, we use Least-Mean-Squares (LMS)
algorithm and the steps in calculating the LMS
solution is summarized below:
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Correlation Tracking
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o Finally, since if [N, ; | = 271 A, however,
then a decoding error will occur, We can
use Chebyshev’s inequality to bound this
probability of error:

b i | - {]—‘;II"J
P(INij| > 271A] < s
o Then we can caculate the value i1 by:
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Querying and Reporting Algorithm

Pseudocode for data gathering node: Pseudocode for sensor nodes:

Initialization: For each request
or (i = 000 < K:i ¢
for (=0 < K:i++) Extract i from the reques

for (=1 j < num_sensors; j + 4+ . .
Ask sensor  for its uncoded reading Get X[n] from A/D converter

for each pair of sensors i, Transmit n mod 2

update  correlation  parameters  using Et|h- i16) and
{ 11)).

Main Loop:
for (k=R: k< N:k++)
Request a sensor for uncoded reading
for each remaining sensor
determine number of bits, i, to request for wusing
Eq.i14).
Request for ¢ bits
Decode data for each sensor.
Update correlation parameters for each sensor.
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Simulation

o Assumed sensor has a 12 bit A/D
converter with a dynamic range of
[-128, 128] Iin our simulations and
further assumed a star topology
where the data gathering node
queried 5 sensor nodes directly.

2003/10/01 I-Tsung Shen, MNet Lab

18



Simulation
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Simulation

o Energy Saving

We can see that LMS algorithm is better suited
for tracking correlations.

Data Set Temperature | Humidity Light
Ave Energy Savings 66.6% 44.9% 11.7%
TABLE |

AVERAGE ENERGY SAVINGS OVER AN UNCODED SYSTEM FOR SENSOR
NODES MEASURING TEMPERATURE, HUMIDITY AND LIGHT
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Conclusion and Discussion
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o This paper have proposed a method of
reducing energy consumption in sensor
networks by using distributed compression
and adaptive prediction.

o Allowing nodes to compress their readings
to different levels without having the nodes
know what the other nodes are measuring.

O Average energy savings per sensor node of
10-65% can be achieved using this
algorithm
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