Optimizing Tree Reconfiguration for Mobile Target Tracking in Sensor Networks

Wensheng Zhang and Guohong Cao

Department of Computer Science & Engineering The Pennsylvania State University

IEEE INFOCOM 2004

Outline

- Introduction
- Preliminaries
- Optimizing Tree Reconfiguration schemes
 - Optimized Complete Reconf. (OCR)
 - Optimized Interception-Base Reconf. (OIR)
- Performance Evaluations
- Conclusions

- Advances in micro-electro-mechanics and wireless communication, we can distribute a huge number of sensor nodes over a vast field to obtain sensing data.
- Use redundant nodes to deal with failures and obtain high-precision sensing data.

Mobile Target Tracking

- The sensor nodes surrounding the moving target should promptly detect the target
- Aggregate their sensing data to generate robust and reliable sensing reports in an energy-efficient way.
- Node involved in the collaboration may change over time.

- Dynamic Convoy Tree-based Collaboration (DCTC) [1]
 - A framework for mobile target tracking
 - Relies on a tree structure called *convoy* tree, which includes sensor nodes around the moving target
 - The tree dynamically evolves by adding some nodes and pruning some nodes as the target moves.

- Dynamic Convoy Tree-based
 Collaboration (DCTC) [1]
 - Constructing the convoy tree
 - Collecting sensing data via the tree
 - Tree expansion and pruning
 - Tree reconfiguration

Preliminaries

Assumptions

- Sensor nodes are stationary and have a fix communication range (d_c) .
- Each nodes is aware of its own location.
- Use GAF protocol to save energy.
 - Sensor network is divided into grids
 - When there is no target close to a grid, only the <u>grid head</u> is awake, and other nodes only need to wake up periodically.

Preliminaries

Assumptions of the network model

- Nodes are densely and uniformly deployed with density .
- The number of hops between two nodes is proportional to the geographic distance between them.(hop $(A, B)=d_{A,B}/d_c$)
- The target keeps its velocity for a relatively long time before any change.

Preliminaries

- The target (locate at L_t) with a certain monitoring radius d_s form a monitoring region.
- All nodes involve in the monitoring region (S_t) are required to participate in detecting the target.

Optimizing Tree Reconfiguration schemes

Root replacement rules

- The current root (R) predicts the location of the target at the next data collection time(L_{t+1}), by using certain movement prediction techniques.
- When the distance between R and L_{t+1} is larger than a threshold $d_r (d_r > d_c)$, R is replaced by a node closest to L_{t+1} .

Optimizing Tree Reconfiguration schemes

- It is important to select an appropriate value for d_r.
- According to the root replacement rule, root replacement is performed every k(v) = d_r/v time units.

Optimizing Tree Reconfiguration schemes

We can compute the average energy consumption per time unit by

$$\overline{E}(k(v), v) = \frac{\sum_{i=0}^{\lceil k(v) \rceil - 1} \overline{E^d}(i \ast v) + \overline{E^t}(k(v) \ast v)}{k(v)}$$
(1)

Therefore, to minimize E(k(v), v), we can compute k(v)

$$k(v) = \arg_{i \in (0, \frac{d_s}{v})} \min\{\overline{E}(i, v)\}$$
(2)

Optimized Complete Reconfiguration (OCR)

- Use root replacement rule to replace the root.
- New root (R`) broadcast a message reconf(R,R`)
- Grid head need to rebroadcast the message.
- Other nodes use attach/detach operations to add/leave a tree.
- Continues until all nodes within the monitoring region have received the message.

(a) Before complete reconfiguration

(b) After complete reconfiguration

Optimized Complete Reconfiguration (OCR)

data collection overhead

$$\overline{E^{d}}(u) = \frac{2*\rho*e*s_{d}}{d_{c}}*\int_{-d_{s}}^{d_{s}}\int_{0}^{\sqrt{d_{s}^{2}-x^{2}}}\sqrt{(x+u)^{2}+y^{2}}dydx$$

Tree reconfiguration overhead:

 $\overline{E^t}(k(v)) = 2 * \rho * s_c * \pi d_s^2$

- OIR only reconfigures a small part of the tree.
- Let the coordinate of R and R` be (x₀, 0) (x₁, 0)
- A node P(x, y) is involved in the reconfiguration if and only if it satisfies

$$\begin{cases} d_{P,L_t} \le d_s, \\ x_0 - d_c \le x \le x_1 + d_c \end{cases}$$

(a) The process of interception-based reconfiguration

(b) After interception-based reconfiguration

- Estimate data collection overhead by three part.
 - Nodes between line I_0 Ο and I₁
 - Nodes on the left side \bigcirc of line I₁
 - Nodes on the right side Fig. 8. Analyzing $\overline{E^{d}}(u)$ of the interception-based reconfiguration scheme 0 of line I_0

- Nodes on the left side of line I₁
 - Data collection overhead
 is (*e*s_d*A₁) where

$$A_1 = \int_{-d_s}^{-u-d_r-d_c} \int_{-\sqrt{d_s^2 - x^2}}^{\sqrt{d_s^2 - x^2}} c_1 * \frac{d_{P_1,R}}{d_c} \, dy \, dx$$

• C₁ can be compute by $c_1 = \frac{hop(P_1, R)}{d_{P_1, R}/d_c}$ where $hop(P_1, R) = \frac{d_{P_1, Q_n} + \sum_{i=2}^{i=n} d_{Q_i, Q_{i-1}} + d_{Q_1, R}}{d_c}$

Fig. 9. The principle of estimating parameter c1

I-Tsung Shen, MNet Lab

Data collection overhead

$$\overline{E^{d}}(u) = \rho * e * s_{d} * (A_{0} + A_{1} + A_{2})$$

Tree reconfiguration overhead

$$\overline{E^t}(d_r) = 2 * \rho * s_c \int_{-u-d_r-d_c}^{d_c} \sqrt{d_s^2 - x^2} \, dx$$

Performance Evaluations

TABLE I

NON-OPTIMIZED RECONFIGURATION SCHEMES

Name	Characteristics
Aggressive Complete Recon-	A complete reconfiguration is initiated
figuration (ACR)	when $d_{R,L_{t+1}} \ge d_c$
Conservative Complete Re-	A complete reconfiguration is initiated
configuration (CCR)	when $d_{R,L_{t+1}} \ge d_s$
Aggressive Interception-based	An interception-based reconfiguration
Reconfiguration (AIR)	is initiated when $d_{R,L_{t+1}} \ge d_c$
Conservative Interception-	An interception-based reconfiguration
based Reconfiguration (CIR)	is initiated when $d_{R,L_{t+1}} \ge d_s$

TABLE II

SIMULATION PARAMETERS

Parameter	Values
field size (m^2)	400.0 * 400.0
number of nodes	6000
communication range (m) : d_c	20.0
monitoring radius (m) : d_s	30.0, 60.0
size of data report (byte): s_d	10,50
size of control message (byte): d_c	10
maximum velocity of a mobile target (m/s) : v_m	[1.0, 20.0]
probability that the mobile target keeps the same	[0.6, 0.9]
velocity: p_k	
data collection interval (s)	1.0

2004/4/8

Performance Evaluations

Energy consumption

 OIR outperforms OCR when s_d/s_c and d_s/d_c are small, velocity is high.

d_=10m, d_=30m, s_1=10bytes, s_=10bytes 0.4AIR Energy consumption (W) 0.35 ACR CIR CCR 0.3 OIR OCR 0.25 0.20.15 0.114 16 18 0 2 8 10 12 20 4 6 vm (m/s) dc=10m, dc=30m, sd=50bytes, sc=10bytes 1.5 AIR 1.4Energy consumption (W) ACR 1.3 CIR 1.2CCR OIR 1.1OCR 1 0.9 0.80.70.60.5 10 12 14 16 18 200 v_m (m/s)

Conclusion

- This paper proposed two optimizing tree reconfiguration methods.
 - o OCR
 - o OIR
- Not so practical?
- Can look for more detail method
 - Tree construction
 - Support higher speed system
 - Etc..