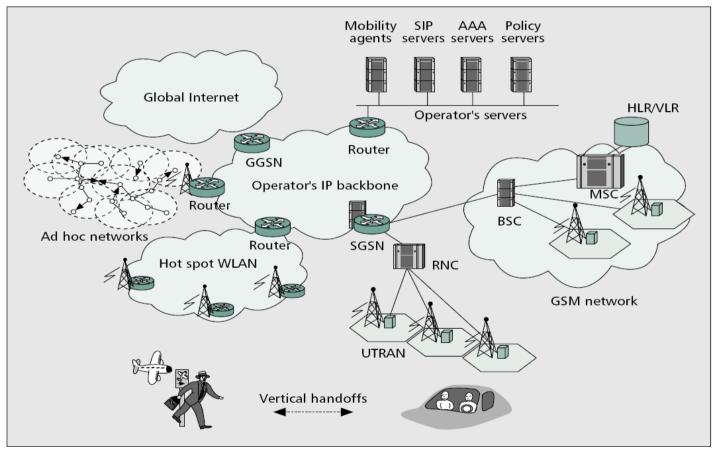
Hybrid Multilayer Mobility Management with AAA Context Transfer Capabilities for All-IP Networks

IEEE Wireless Communications
August 2004


Outline

- Introduction
- Mobility Management Scheme
- AAA Context Transfer for Seamless and Secure Handovers
- Performance Evaluation
- Conclusion
- References

- There are two major technological forces that drive the communication era:
 - □ Wireless evolutionary systems
 - □ The Internet
- The aim of these forces convergence is to offer seamless multimedia services to mobile/wireless IPbased hosts across a variety of heterogeneous access technologies.
 - UMTS
 - Wireless LAN
 - □ 4G
 - □ Etc.

- Today, the communication subscribers are increasingly relying on diverse communications solutions for voice, data, and multimedia needs.
- What is missing is an overlying strategy for integration of these disparate solutions!
 - Mobility
 - Authentication
 - Subscriber administration
 - Consolidated accounting and billing

- Next-generation networks features:
 - Transition to an all-IP network infrastructure
 - Support heterogeneous wireless access
 - Seamless handovers
 - Mobility and QoS support at or above the IP layer
 - □ Deployment of new protocols for services such as AAA and their inter-working with existing technologies.
 - Support service roaming
 - □ Etc.

■ Figure 1. All-IP network architecture.

- This article presents a multilayer mobility management scheme for All-IP networks.
 - Hybrid scheme for macro-mobility
 - Micro mobility protocol
- Context transfer solution for AAA
 - ☐ Enhance the multilayer mobility management scheme

- Mobile IP (MIP) is the current standard for supporting the mobility of mobile users.
- The problems of MIP
 - □ Triangular routing
 - MIP route optimization requires modifications in the IP stack of the end hosts
 - □ Not acceptable for delay sensitive traffic
- Using Session Initiation Protocol (SIP) to alleviate the problems associated with MIP.

- SIP is an application-layer protocol that can establish, modify and terminate multimedia sessions.
- Support basic call control and application-layer signaling for voice and multimedia sessions.
- SIP can run on top of several different transport protocols such as TCP, UDP and SCTP.

- SIP components
 - □ SIP user agent
 - user agent client
 - user agent server
 - □ SIP redirect server
 - □ SIP proxy server
 - □ SIP registrar

SIP message format:

Start-line INVITE sip:bob@biloxi.com SIP/2.0

Header Via: SIP/2.0/UDP pc33.atlanta.com;branch=z9hG4bK776asdhds Max-Forwards: 70

Field(s) To: Bob <sip:bob@biloxi.com>

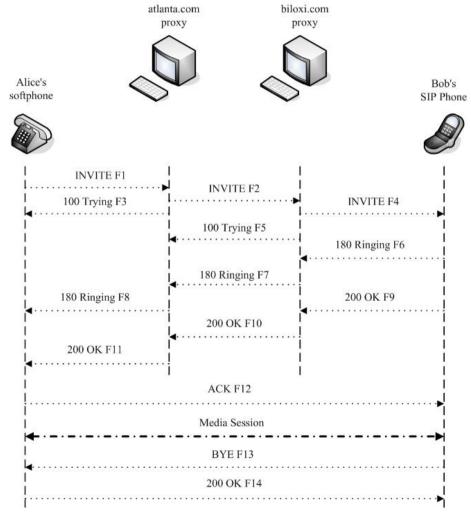
From: Alice <sip:alice@atlanta.com>;tag=1928301774

Call-ID: a84b4c76e66710@pc33.atlanta.com

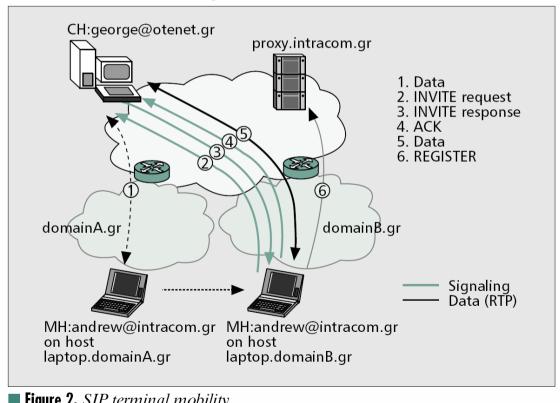
CSeq: 314159 INVITE

Contact: <sip:alice@pc33.atlanta.com>

Content-Type: application/sdp

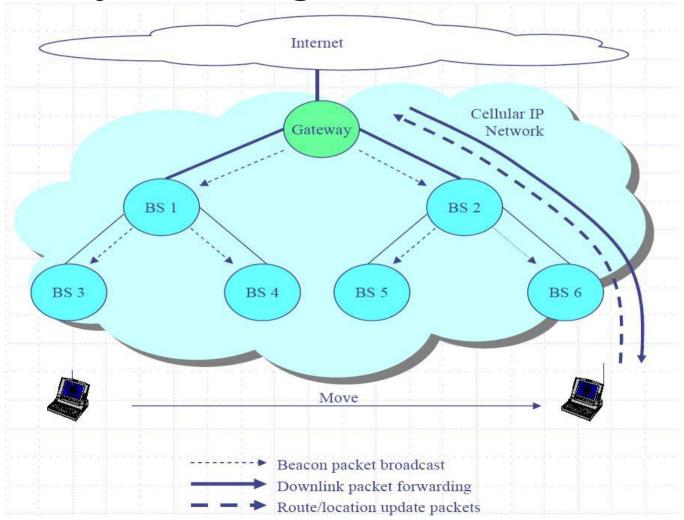

Content-Length: 142

Empty Line


Message v=0

Body t=2873397496 2873404696

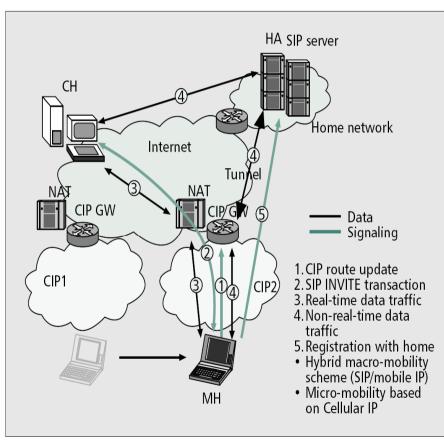
m=audio 49170 RTP/AVP 0


SIP handoff during a session

■ Figure 2. SIP terminal mobility.

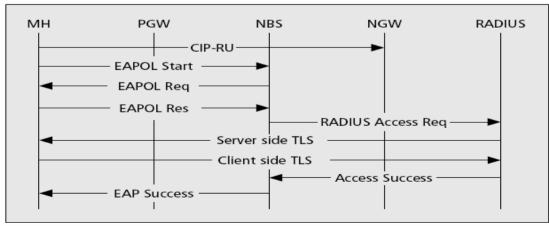
- In the proposed scheme, SIP signaling is used to support inter-domain mobility for real-time traffic, while MIP applies to non-real-time traffic.
- Mobility within a subnet area can be supported by a candidate micro-mobility protocol.
 - □ Cellular IP,
 - □ HAWAII
 - □ Hierarchical Mobile IP
 - □ Etc.

- Cellular IP was designed to support fast handoff in a wireless network of limited size.
 - □ Eliminate the need for a mobile to change its IP address while moving inside a CIP network.
 - Use host-specific routing
 - □ Support paging



- The integration between macro-mobility protocols (SIP and MIP) and micro-mobility protocols is accomplished through the Enhanced Mobility Gateway (EMG).
 - □ FA

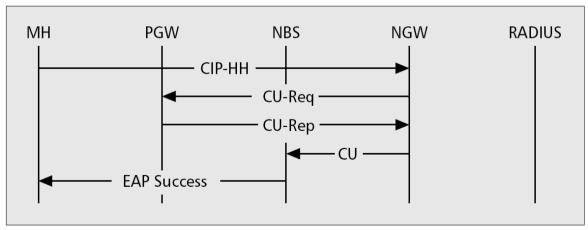
 - □ STUN servers
 - Others


Figure 3. The enhanced mobility gateway separating micro-mobility from hybrid macro-mobility protocols.

■ **Figure 4.** *The hybrid SIP/MIP approach.*

- The minimization of handoff delay is a key issue in the development of the multilayer mobility management scheme.
- The introduction of AAA functionalities adds an undesired delay component.

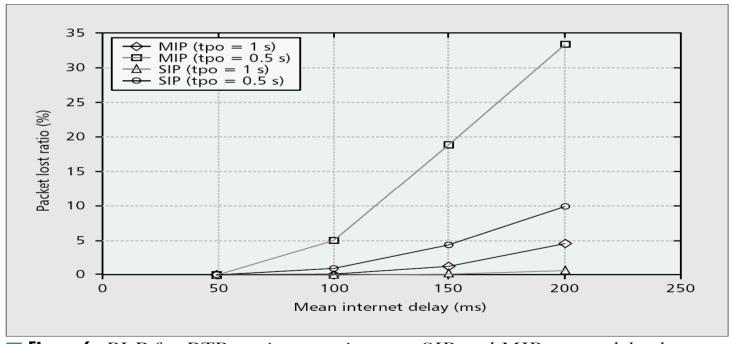
- WLANs authenticate mobile users according to the IEEE 802.1x standards
- EAP-TLS was the chosen protocol as it is 802.1x/EAP compliant
 - mutual authentication
 - Dynamic Wired Equivalent Privacy (WEP)


■ Figure 14. The signaling flow of AAA messages.

- Context transfer could facilitate the process by transferring AAA state information from the old access router to the new access router (nAR).
- Enhance the CIP protocol

2005/1/21

- □ Introduction of a context-update (CU) packet
- context cache at each CIP leaf node and the gateway
- Augment the cellular-IP route-update packet with a flag to indicate handoff
- □ context-update request (CUReq) packet
- □ context-update reply (CURep) packet


- MH transmits a RU packet to EMG.
- If the H flag is enabled, it indicate handoff occur.
- EMG request the contest
- EMG send back the CU packet to the nBS.

■ **Figure 15.** *Signaling flow for AAA using context transfer.*

Performance Evaluation

Packet lost ratio for RTP session running over SIP and MIP

■ Figure 6. PLR for RTP session running over SIP and MIP versus delay between home and visited network (MN is static).

Performance Evaluation

Msg	Time (s)	Source	Destination	Protocol	Info			
1	48.304	МН	CIP-GW	CIP	Route Update			
2	50.738	МН	AP2	EAPOL	Start			
3	50.74	AP2	МН	EAP	Request			
4	50.748	МН	AP2	EAP	Response			
5	50.753	AP2	МН	EAP	Request			
6	51.538	МН	AP2	EAP	Response			
7	51.739	МН	RADIUS	TLS	Client Hello			
8	51.756	AP2	МН	EAP	Request			
9	52.999	МН	AP2	EAP	Response			
10	53.01	RADIUS	МН	TLS	Server Hello			
11	54.265	МН	AP2	EAP	Response			
12	54.275	AP2	МН	EAP	Request			
13	55.257	МН	RADIUS	TLS	Handshake			
14	55.276	RADIUS	МН	TLS	Handshake			
15	56.519	МН	AP2	EAP	Response			
16	56.523	AP2	МН	EAP	Success			
Handoff delay = 56.523 – 48.304 = 8.219 s								

Msg	Time (s)	Source	Destination	Protocol	Info				
1	59.786	МН	CIP-GW	CIP	Route update				
2	60.167	AP1	МН	EAP	Success				
Handoff delay = 60.167-59.786 = 0.381 s									

■ **Table 5.** *EAP/TLS* signaling exchange (AAA context transfer enabled).

[■] Table 4. *EAP/TLS* signaling exchange (AAA context transfer disabled).

Conclusion

- This article a hybrid scheme to handle macro-mobility.
- Inter-working between micro-mobility and macro-mobility is implemented at EMG.
- A context transfer solution has been proposed to avoiding the additional delay introduced by AAA operation.

References

- [1] RFC 3261 SIP: Session Initiation Protocol ,June 2002.
- [2] Chen, Jyh-Cheng / Zhang, Tao
 IP-Based Next-Generation Wireless Networks
 ISBN 0-471-23526-1 John Wiley & Sons
- [3] A. Campbell *et al.*, "Cellular IP," IETF Internet draft, work in progress, Jan. 2000.