Integration of IEEE 802.11 WLANs with IEEE 802.16 based multihop infrastructure mesh relay networks :

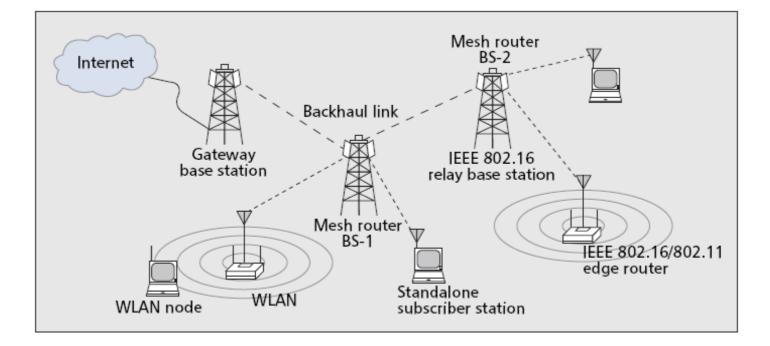
A game theoretic approach to radio resource management

IEEE Network Magazine, May-June. 2007 Volume 21, Issue 3

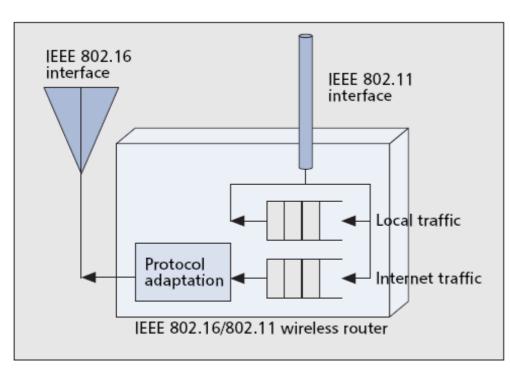
> 林咨銘 2007/10/24

Outline

- Introduction
- Overview of IEEE 802.16/WiMAX
- The Integrated WiMAX/WLAN Network
- Research Issues in an Integrated WiMAX/WLAN Network
- Proposed Game-Theoretic Model
- Performance Evaluation
- Conclusions


Introduction

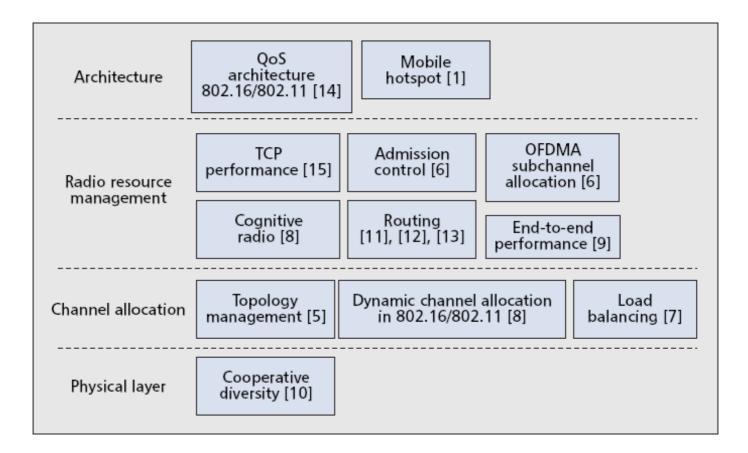
- IEEE 802.16 is a promising solution to provide backhaul support for WLAN hotspots
- An integrated 802.16/802.11 network can be used to extend the service availability for mobile Internet applications
- Although, PHY and MAC layer are specified in 802.16 standard, radio resource management remains an open issues
- Resource management and admission control of 802.16 and 802.11 should be considered jointly to achieve
 - High network utilization
 - High level of QoS


Overview of IEEE 802.16/WiMAX

- Physical Layer
 - Different specifications for different air interface for different frequency band
 - WirelessMAN-SC
 - WirelessMAN-SCa
 - WirelessMAN-OFDM
 - WirelessMAN-OFDMA
 - Adaptive Modulation and Coding (AMC)
- MAC layer
 - Connection-oriented MAC protocol
- Mesh operation
 - Mobile Multi-Hop Relay (MMR) is also suitable as a wireless backhaul to serve WLAN hotspots

The Integrated WiMAX/WLAN Network

Edge Router with Two Air Interfaces

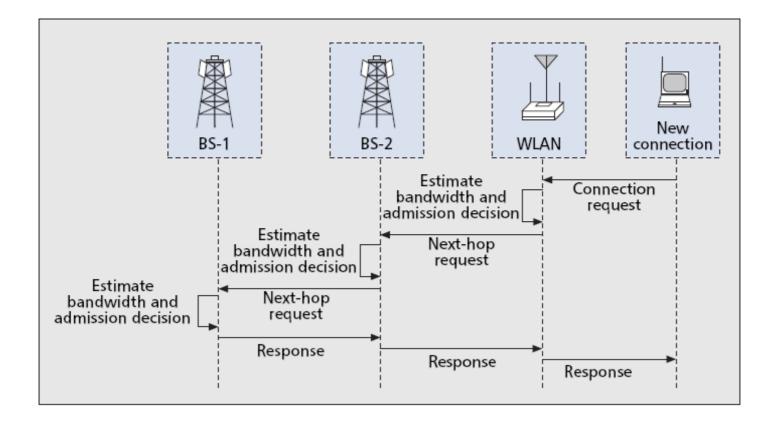


- Two types of traffic
 - Local traffic
 - Connection in the coverage area of WLAN
 - Relay traffic
 - Connections traversing the wireless backbone to an Internet gateway
- Protocol adaptation
 - Interworking between 802.11 and 802.16

- Topology Management
 - Mesh/Relay topology can provide wireless backhaul links in a lower cost
- Radio Resource Management (RRM)
 - Efficient RRM at mesh router can be achieved by intelligent bandwidth allocation, channel assignment, and admission control
 - Fairness between local and relay traffic and prioritization among different types of traffic must be considered
 - [7] [8] was presented to solve RRM and transmission problem
 - Cognitive Radio (CR) was proposed in [9] for sharing radio resource in frequency, space, and time domain
 - Power control should be also considered to minimize transmit power for avoiding interference

- Link-Level Error Control and End-to-End QoS
 - Space diversity technology [11] can improve the transmission performances
 - Relying on transmissions by several nodes with each node acing as a virtual transmission antenna for the receiver
 - Integration of error control and error recovery as well as packet scheduling and routing schemes are interesting research issues
- Routing Strategies
 - Metrics proposed in [12] should be taken into account
 - Expected transmission count (ETX)
 - Per-hop round-trip time (RTT)
 - Per-hop packet pair delay
 - A crosslayer optimization approach should be used
 - Routing protocol performance depends on the resource allocation scheme used at each BS

- Protocol Adaptation and QoS Support
 - Heterogeneous network integration are discussed for years
 - The approaches to QoS provisioning are different in 802.16 and 802.11 standard
 - A unified QoS framework based on QoS mapping was proposed in [15]
 - However, the mechanisms to <u>ensure</u> the QoS requirements were not considered
- Optimizing Transport Layer Protocol Performance in an integrated WiMAX/WLAN network
 - Multihop transmission affects the error recovery and congestion control performance
 - There exists an optimal TCP windows size to achieve the highest throughout [16]
 - Only a single TCP flow was considered


Key Contributions of Related Work

Components	Key contribution
QoS architecture [15]	An architecture to provide end-to-end QoS in an integrated 802.16/802.11 network
Mobile hotspot [1]	An architecture for two-hop communication for mobile hotspot based on UMTS
Resource allocation for OFDMA [7]	Subchannel allocation, route selection, and admission control algorithm for OFDMA-based multihop wireless networks
Evaluation of link-quality metrics [12, 13]	Detailed evaluation of link-quality metrics used in multihop routing interference-aware routing interference-aware routing interference-aware routing and scheduling for 802.16 mesh networks
Congestion-based routing [14]	Congestion-based routing in multihop TDD-CDMA network to minimize the overall transmis- sion power and a new dynamic channel allocation algorithm
End-to-end performance [10]	Analytical model to obtain end-to-end delay performance for multihop relay network
Topology management [6]	Optimization formulation to obtain the topology for an 802.16 backhaul network
Cognitive radio [9]	Cognitive radio approach for dynamic spectrum allocation, power control, and time agility for an integrated 802.16/802.11 network
Load balancing and sharing [8]	Load balancing and sharing scheme based on channel assignment to avoid interference
Cooperative diversity [11]	New transmission method based on cooperation of the multiples node in different locations to improve diversity gain

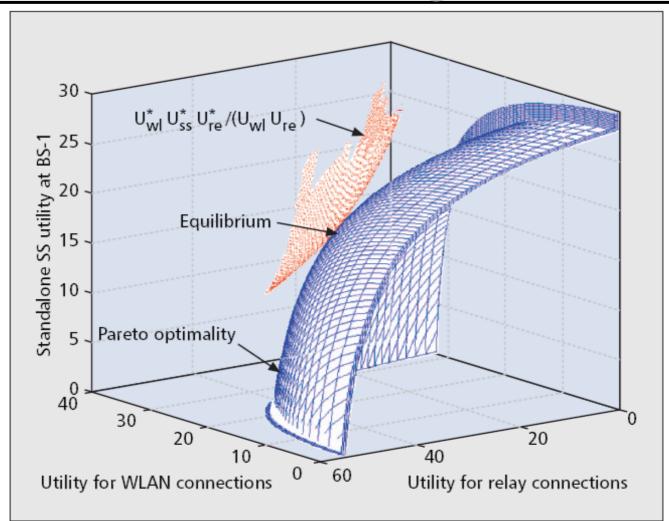
Bandwidth Management and Admission Control – A Game Theoretic Model

- A game is described by a set of rational players, the strategies associated, and the payoffs
- BSs *bargain* with each other so that maximum benefit by playing the game without cooperation

Proposed Architecture for Integrating IEEE 802.11 and 802.16

Bargaining Game Formulation

• Player:


- The traffic from WLAN, standalone SS, and relay traffic

- Strategy:
 - Total burst size in a transmission frame
- Payoff:
 - Total utilization gained from the achievable transmission rate

Proposed Game-Theoretic Model

- The bargaining game model for distribute bandwidth management and admission control is proposed in an integrated WiMAX/WLAN multihop network
- Using bargain game for bandwidth allocation is fair and efficient
 - *Pareto Optimality* can be achieved [20]
 - The resource allocated can not be further utilized by increasing or decrease some resource hold by someone

Pareto Optimality and Equilibrium of Bandwidth Sharing at BS-1

Proposed Game-Theoretic Model

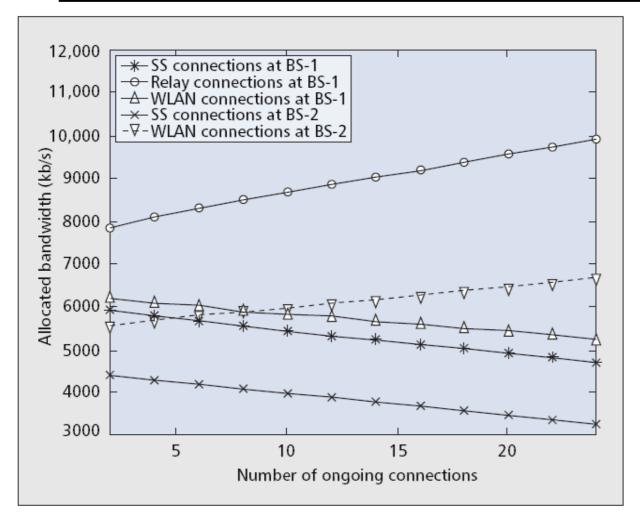
• Utilization function of network model [19]

 $U(T) = w \log(1 + \alpha T)$

• Since different types (*j*) of connections (*i*) have different preferences on bandwidth allocation, the equation modified as:

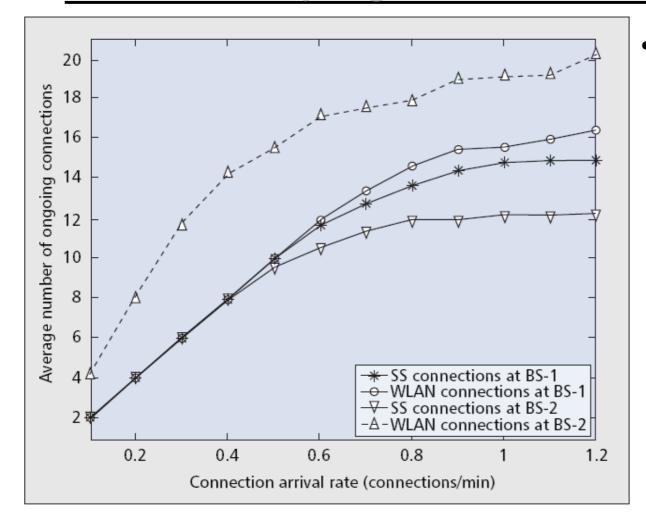
$$U_j^{(h)}(B_j) = \sum_{i \in C_j} w_i \log\left(1 + \alpha_i T_i^{(h)}\left(D_i^{(h)}\right)\right)$$

• Upon receiving bandwidth request , BS performs bandwidth estimation based on estimated successful packet transmission and packet collision probabilities to get "Transmission Rate" (denoted as <u>T</u>) for admission control

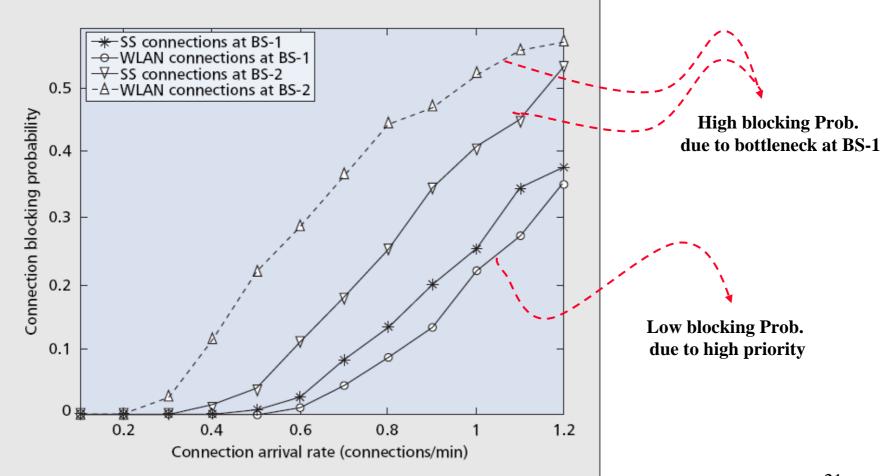

Proposed Game-Theoretic Model

- Because three types of traffic have different behavior, the allocated block sized should be weighted
 - The amount of bandwidth assigned to connection i of type j at BS h is determined based on weight w_i

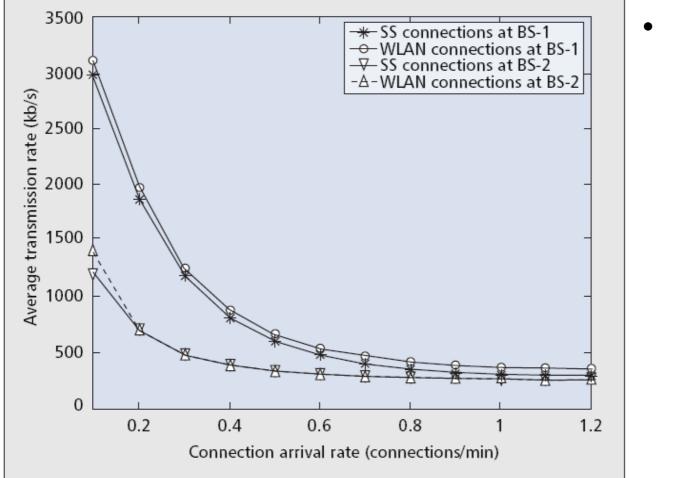
$$D_i^{(h)} = \frac{w_i B_j}{\sum_{i \in \mathbb{C}_j} w_i},$$


where $D_i^{(h)}$ is the burst size for connection *i*, B_j is the total burst size allocated to connections of type *j*, and $\sum_{i \in \mathbb{C}_i} w_i$ is the sum of weights of connections of type *j*.

Bandwidth adaptation under different number of ongoing connections

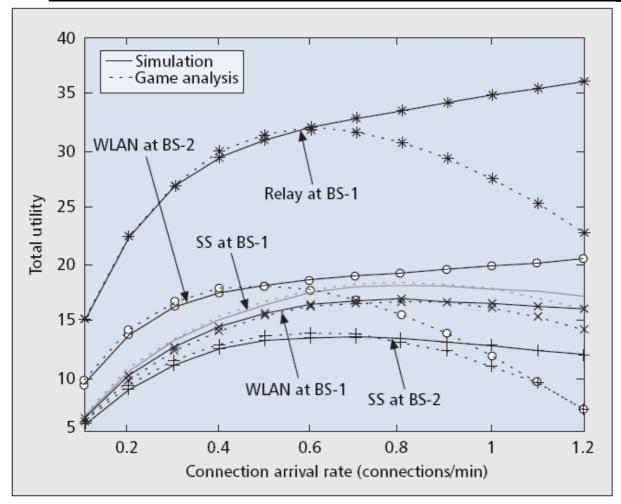

- WLAN and relay traffics are given higher priorities
- Equilibrium is stable in which bandwidth adaptation function are linear

Average number of ongoing connections under varying connection arrival rate



Average number of ongoing connections increase as traffic intensity increases

Connection blocking probability under varying connection arrival rate



Average amount of allocated bandwidth under varying connection arrival rate

Bandwidth assigned to a connection decreases as traffic intensity increases

Variation in total utilization under varying connection arrival rate

- Total utility increase when connection arrival rate increases
- Total utility do not decrease
 - Incoming connection is reject if admission of the connection reduce total utility

Conclusions

- An architecture for integrating WiMAX and WLAN is presented
- Related issues are overviewed and some solutions proposed have been reviewed
- This study also presents a game-theoretic framework for radio resource management
- A bandwidth allocation scheme has been presented for fair resource allocation and an admission control policy has been proposed to maximize the utilities for different type of connections