A Novel Algorithm for Utilizing Relay Stations for Enhancement Data Rate in 4G Mobile System

VTC 2007, April

林咨銘 2008/02/29 tmlin@itri.org.tw

Outline

- Introduction
- Problem Statement
- System Model and Assumption
- Proposed Algorithm
- Simulation
- Conclusions

Introduction

- Relay Station is introduced for:
 - Coverage extension
 - Throughput enhancement

Introduction

- What's IEEE 802.16j Task Group
 - One of the sub-system within IEEE 802.16 WG
 - Goals to provide the first wireless relay system
 - Backward compatible with 802.16e
 - Frame structure
 - PHY specifications
 - Network Access and operations
 - TDD system
 - PMP mode
 - License band

Introduction

This study targets on throughout enhancement

Problem Statement

 The introduction of RSs causes inefficient time-slot allocation in TDD system

Relay Frame Structure

Problem Statement

- Null slot:
 - Non-operation slot
 - Causes the opportunity reduction in connecting a BS and other MSs
- The problem of inefficient allocation gets worse when number of RS increases

System Model and Assumption

 A cell is sectorized into 3 sectors and divided into inner and outer zone

– IMS_i: the i_{th} MS in inner zone

- OMS_i: the i_{th} MS in outer zone

System Model and Assumption

- RS in the cell takes charge of relaying between the OMSi and BS
- It is assumed that
 - A BS transmits with just enough power to reach MSs in the inner zone
 - RS transmits with enough power to reach
 MSs in outer zone

- DL sub-frame is divided into two parts
 - Slot 1 to 3 : BS-to-{RS, IMS}
 - Slot 4 to 6 : RS-to-OMS and BS-to-IMS*
- UL sub-frame
 - Slot 7 to 9 : OMS-to-RS and IMS*-to-BS
 - Slot 10 to 12 : {IMS, RS}-to-BS

*: particular sector

BS=> RS1/RS2/RS3 BS=>IMS1/IMS2/IMS3 RS1=>OMS1 BS=> RS2/RS3 BS=>IMS2/IMS3

RS2=>OMS2 BS=> RS1/RS3 BS=>IMS1/IMS3 RS3=>OMS3 BS=> RS1/RS2 BS=>IMS1/IMS2

OMS1=>RS1 RS2/RS3 => BS IMS2/IMS3 => BS OMS2=>RS2 RS1/RS3 => BS IMS1/IMS3 => BS

OMS3=>RS3 RS1/RS2 => BS IMS1/IMS2 => BS

RS1/RS2/RS3 => BS IMS1/IMS2/IMS3 => BS

- Advantages
 - IMSs in two neighbor sectors can operate simultaneously when the third RS transmit signal to its OMS
 - Null slot can be utilized
 - Throughput increases as the number of RSs in a sector increases
 - MS can be also covered by more RSs

Simulation

$$SIR = \frac{TransmittedPower}{\sum IntracellInterference + ThermalNoise}$$
(1)

$$CAPACITY = B \cdot \log_2(1 + SIR) \tag{2}$$

$G = \begin{pmatrix} G_{11} & G_{12} & \cdots & \cdots \\ G_{21} & G_{22} & \cdots & \cdots \\ \vdots & \vdots & \ddots & \vdots \\ \vdots & \vdots & \ddots & \ddots \end{pmatrix}$

SIMULATION PARAMETERS

Parameter	Value(Unit)
Cell radius	1 (Km)
Inner zone radius	0.65 (Km)
BS power	20 (W)
RS power	10 (W)
MS power	2 (W)
Velocity of mobile	1 (m/s)
System bandwidth	1.25(M)
Thermal noise	-120 (dBm)
Observation time	1 (second)

Simulation

Outer Zone Throughput

Inner Zone Throughput

Conclusions and Discussion

- The proposed scheme introduces sectorization and division technique of a cell and a RS is arranged in each sector
- Through simulations
 - Throughput increases about three times when the algorithm is applied
 - The proposed scheme allocates timeslot to each sector, not the RS
 - RS improves channel condition, and then increases system data rate
 - The system uses low power, inter-cell interference from neighbor cells will be reduced => effect system data rate also