Revising Buffering in Multihop CSMA/CA Wireless Networks

SECON 2007

林咨銘 2008/10/16 tmlin@itri.org.tw

Outline

- Introduction
- Related Works
- Model
- The Current Situations
- Proposed Scheme
- Solutions to Congestion
- Possible Extensions
- Conclusions

Introduction

- Multihop wireless networks can provide
 - Small amount of data in an energy efficient way
 - Broadband services
- IEEE 802.11 is the leading protocol for broadband ad hoc networks
 - Poor throughput over multiple hops is provided
- The disappointing throughput is caused by
 - Fundamental limitation due to spatial reuse
- The measured throughput is still much smaller than the theoretical value
 - Additional loss is due to a poor coordination between transmissions

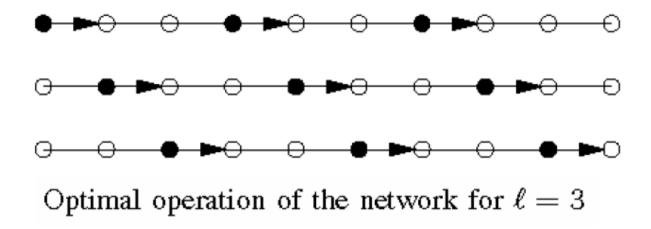
Introduction

- Congestion problem
 - Nodes compete with each other for transmission
- Two solutions
 - Centralized scheduling
 - Unpredictable results when control messages are delayed or lost
 - Multiple wireless interfaces
 - Interferences between interfaces impact throughput and are evidenced in prior studies
- This study considers a single multihop path and focus on buffering and packet dynamics to solve the congestion problem

Related Works

- Many works have been developed for mesh networks to maximize spatial reuse of channel assignment
 - Optimal centralized assignment has been shown to be a NP hard problem
- Interactions between TCP and MAC layer in multihop can increase throughput
 - Optimal the TCP window size
 - Adaptive MAC protocols
- The goal of this study is to maximize throughout using completely decentralized MAC protocol
 - Resolve the contentions between neighboring nodes locally

Model

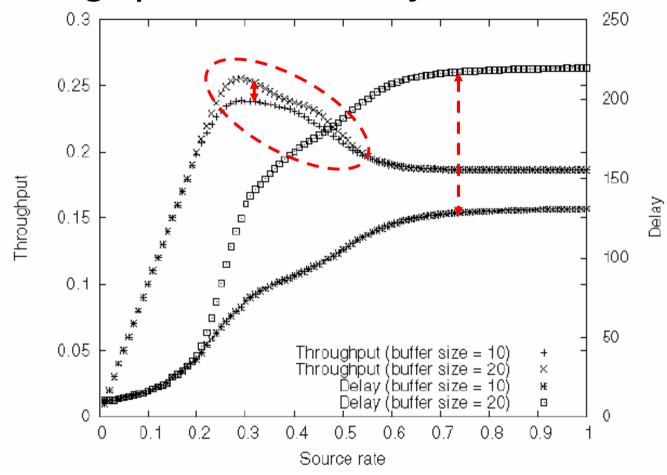

This study considers the route across a multihop wireless networks

- Node 0 : the source node
- Node N: the destination
- Node 1 ~ N-1: the intermediate node

$$\bigcirc \frac{\text{Link 1}}{\bullet} \bigcirc \frac{\text{Link 2}}{\bullet} \bigcirc \frac{\text{Link 3}}{\bullet} \bigcirc \frac{\text{Link N}}{\bullet} \bigcirc \frac{\text{Lin$$

Model

L: smallest integer such that / i-j / ≥ L
 (Link i does not interfere with link j)

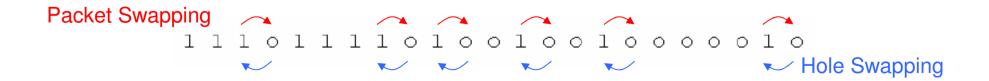


• This model has only 1/L throughput of the multihop route

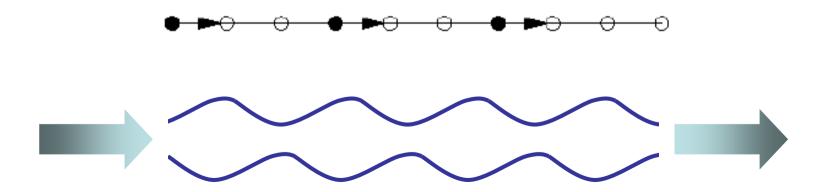
The Current Situations

- Potential waste of bandwidth due to buffer overflow
 - Buffer overflow => Drop packet => Waste resource
- Some observations are noted
 - Throughput decreases when network starts to drop packets
 - Increasing the buffer size does not increase asymptotic throughput
 - End-to-End delay increases if buffer size is enlarged

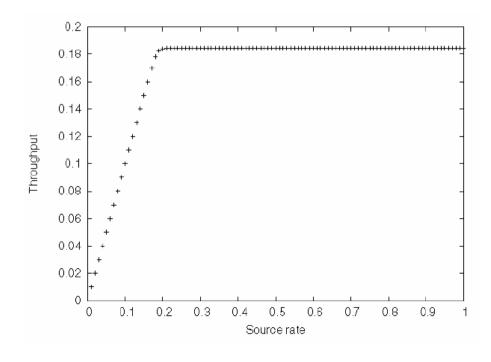
Observation 1 – Throughput and Delay Performance

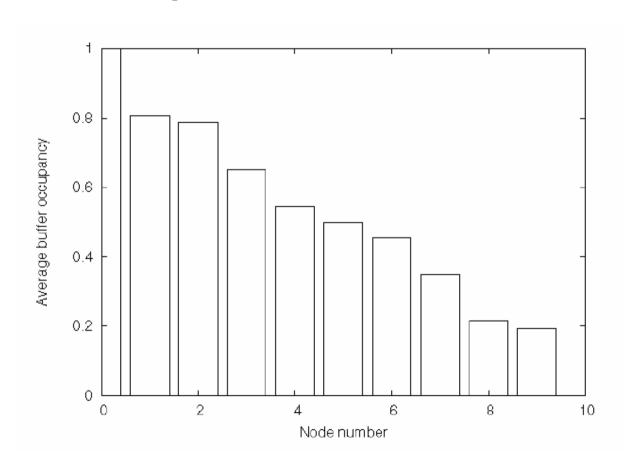

The lost of throughput is not due to undersized buffers

Observation 2 – Average Occupancy of Buffer


Team up with node 3 buffer size = 3buffer size = 20 common Average buffer occupancy 5 Team effect with node 0 10

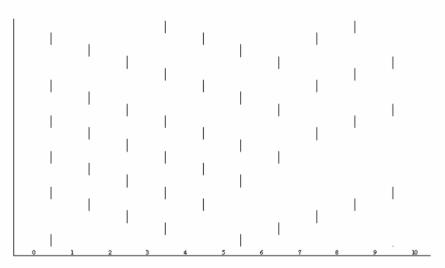
- Two rules
 - R1: Incoming data transmission are not accepted by the nodes if their buffers are already full
 - R2 : Relay nodes' buffers may contain <u>no more than</u>
 <u>one packet</u>
- The second rule is to keep delay in short
- Using small buffers will not lead to any additional packet drop


- Packet/hole duality
 - Because of R1 and R2, a transmission can only take place between
 - A node that has one packet in its buffer
 - A node that has no packet
 - Packet swapping is implying Hole swapping between the source and destination nodes



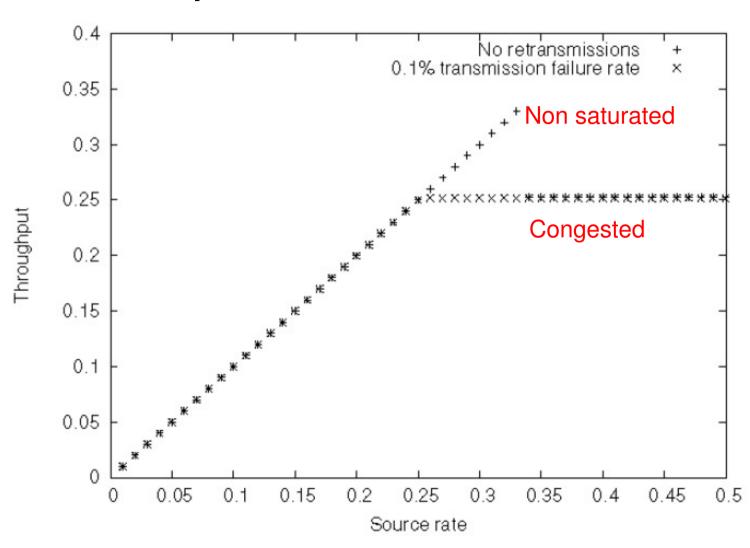
- Throughput and Congestion
 - The network behaves like a <u>pipe</u> with single buffer at its entrance because all the buffering is done at the source node
 - The configuration is particularly suitable for TCP

- The throughput is still far from the optimal throughput of 1/L
 - Transmission interfere with each other when packets are close from each other
- Traffic jam problem



Average buffer occupancy for a protocol complying with R1 and R2 and interference parameter L = 3

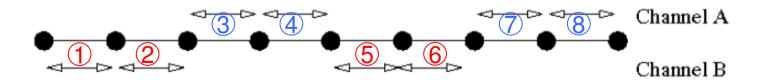
Solutions to Congestion


- Constant packet size
 - Setting the size of all MAC data frames to the same value can establish a well coordinated behavior
 - All the transmission in the network synchronized
 - Slotted protocol

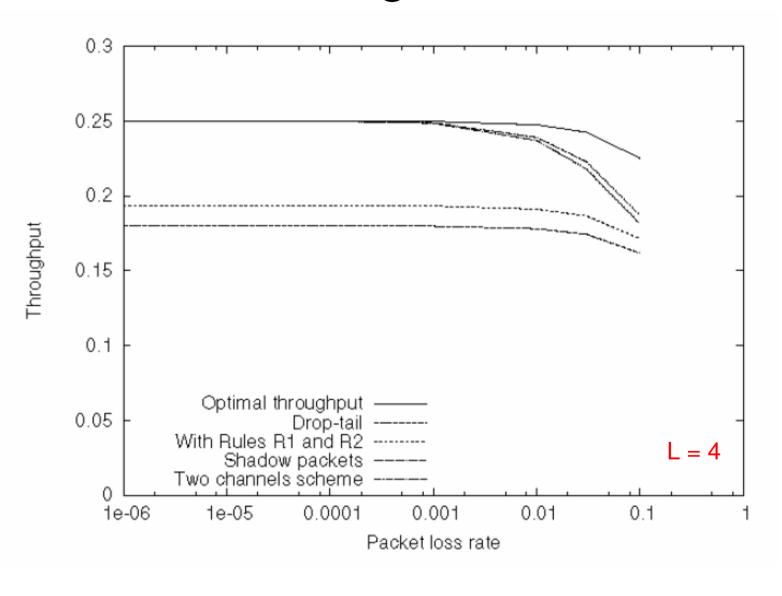
Solutions to Congestion

- Saturated mode (source rate > 1/L)
 - B(n), status of node n, is a discrete time Markov chain
 - B(n+1) is independent of all values B(m) for m<n
 - Unique recurrent positive class
- Non saturated mode (source rate < 1/L)
 - Transmission rate = source rate
 - the transmission between two consecutive packets do not interfere each other
 - The fluid is unstable
 - Transmission delay for some reason leads the network to congested regime
 - e.g. packet loss

Throughput with interference parameter L = 3

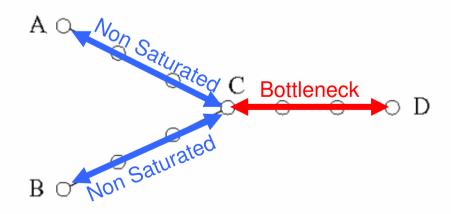

Solutions to Congestion

- Shadow packets
 - Nodes refuse incoming packets for a certain duration
 - Making the fluid regime stable

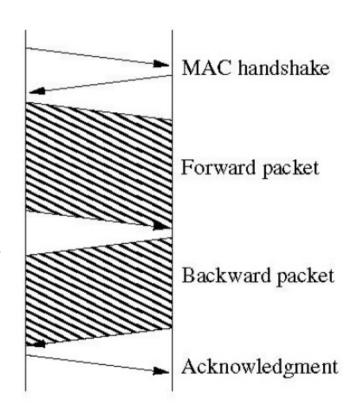

 Because of packet/hole duality, a sufficient spacing between holes rather than between packets

Solutions to Congestion

- Two channel scheme
 - No explicit scheduling is necessary
 - Two states for each node:
 - Occupied
 - Vacant
 - Simple channel assignment rule to reduce the interchannel interference
 - Links 1, 2, 5, 6,..., 4K +1, 4K + 2 use the first channel while others use the other channel
 - No contention between links at all



Simulation – Against Packet Loss


Possible Extensions

- Mesh Networks
 - Multihop wireless network may have much more complex topologies
 - A case where a flow splits into two branches is addressed
 - DC would not be in a congested regime
 - Packet/hole duality
 - Bandwidth allocation for AD and BD depends on the contention scheme between two links accessing node C

Possible Extensions

- Opposite traffic
 - Backward traffic can be also applied along the same route by adopting packet/hole duality
 - Replace swapping hole with a backward packet
 - Sum of the forward and backward packets shall be constant to keep the rule of slot transmission
 - Throughput is identical as in the unidirectional case
 - However, some amount of packets must be carried in both directions

Conclusions

- Multihop transmissions suffer form intrinsic performance problems due to
 - Long transmission path
 - Congestion
 - Packet loss
- A simple policy is proposed to solve the problems by
 - Reducing buffer size to one packet
 - Refusing incoming transmissions when buffers are already occupied
- Interesting property that packets and holes have dual roles is acquired for extending the scheme
 - Carrying traffic in both directions with same performance as in the unidirectional case