A Survey on Femtocell:

[1] Femtocell Networks: A Survey IEEE Communication Maganize Vol. 46, Issue 9, Sep. 2008

[2] WiMAX Femtocells: A Perspective on Network Architecture, Capacity, and Coverage IEEE Communication Magazine Vol. 46, Issue 10, Oct. 2008

> 林咨銘 2009/02/12

Outline

- Introduction
- Motivation
- Technical Aspects of Femtocells
- Benefits of Femtocells
- Usage Case and Network Architecture
- Technical Challenges
 - Network Architecture
 - Interference Management
 - Synchronization
 - Security and Performance
- Conclusions

Introduction

- The wireless capacity has doubled every 30 months since 1957
 - 25X improvement from wider spectrum
 - 5X improvement by dividing the spectrum into smaller slices
 - 5X improvement by designing better modulation schemes
 - 1600X gain transmit distance
- The main problem of current cellular network
 - The expensive deployment cost of network infrastructure
 - Low signal strength received from an outdoor BS inside a building

Motivation

- Some studies on wireless usage show
 - More than 50% voice calls and more than 70% data traffic are originated indoor
- Win-Win strategy
 - Higher data rate and reliability for subscribers (User)
 - Reduced amount of traffic on expensive macrocell network (Operator)
 - Resource on truly mobile users can be focused

The Truth is...

Source : Pico Chip

Some Solutions

Technical Aspects of Femtocells

- Femtocells
 - The smaller cell inside a building communicates with cellular network over a broadband connection
 - Femto-AP
 - A simplified low-power device that utilizes cellular technology with IP backhaul through a local broadband connection, e.g. DSL, cable modem, or RF backhaul channels

Femto Solution

Infrastructure	Expenses	Features
Femtocell: Consumer installed wireless data access point inside homes, which backhauls data through a broadband gateway (DSL/cable/Ethernet/WiMAX) over the Internet to the cellular operator network.	Capital expenditure. Subsidized fem- tocell hardware. Operating expenditure. a) Providing a scalable architecture to transport data over IP; b) upgrading femtocells to newer standards.	Benefits. a) Lower cost, better cover- age and prolonged handset battery life from shrinking cell-size; b) capaci- ty gain from higher SINR and dedicat- ed BS to home subscribers ; c) reduced subscriber churn Shortcomings. a) Interference from nearby macrocell and femtocell trans- missions limits capacity; b) increased strain on backhaul from data traffic may affect throughput.

Benefits of Femtocells

- Better coverage and capacity
 - Due to short transmit-receive distance
 - Lower transmit power
 - Prolong handset life
 - Higher SINR
 - Higher spectral efficiency
- Improved macro reliability
 - BS can provide better reception for mobile users
 - Traffic originating indoors can be absorbed into femtocell networks over IP backbone
- Cost Benefit
 - \$60,000/year/marcrocell vs. \$200/year/femtocell
- Reduced subscriber turnover
 - Enhanced home coverage will reduce motivation for users to switch carriers

Typical Femto Deployment

Source : Femto Forum

Benefits of Femtocells

- Capacity benefits of femtocell
 - Reduced distance between sender and receiver leads to higher signal strength [capacity improvement]
 - Lowered transmit power decrease the interference for neighboring cells [capacity improvement]
 - Femto-AP can devote a larger portion of resource for fewer users.

[frequency efficiency]

Use Cases and Network Architecture

- The WiMAX network consists of :
 - Access Service Network (ASN)
 - An all-IP network structure is applied
 - Operator-owned macro/micro BSs and customer-owned Femto-APs are connected to local ISP networks
 - Connectivity Service Network (CSN)
 - Composing of services, such as an authentication, authorization, and accounting (AAA) server, Mobile IP, Home agent, and policy server.
 - ASN gateway
 - A interface between ASN and CSN
 - Marco/micro BSs and Femto-APs communicates with ASN gateway through packet-switched IP network.

Use Cases and Network Architecture

Coverage in Different Simulation Scenario

Greater coverage than conventional network

Capacity in Different Simulation Scenario

Areal capacity gain *		Large cell scenario			Small cell scenario				
		Sparse deployment		Dense deployment		Sparse deployment		Dense deployment	
		Public	Private	Public	Private	Public	Private	Public	Private
FS transmit power	0 dBm	54.479	54.672	356.8325	364.1799	34.1512	34.3671	152.0866	151.5067
	10 dBm	57.764	59.1746	350.6903	384.0944	36.1507	37.5628	143.5709	153.5189
	20 dBm	57.4989	60.7799	319.2529	392.5468	34.9872	39.1827	134.7428	152.4803
System capacity without Femto-AP		25.92	1 Mb/s	27.377 Mb/s		27.621 Mb/s		27.551 Mb/s	

* Areal capacity gain = (system capacity with Femto-APs deployed)/(system capacity without Femto-APs)

- Femto-APs reuse the same bandwidth as macro-BS, so the available bandwidth per unit area increases
- Most users associated with Femto-AP experience little signal attenuation, which results in high SINR and SE for these users
 - Proportional to the number of Femto-AP per sector

Notes from Simulations

- Higher Femto-AP transmission power results in higher SINR and SE for indoor users
- When density of Femto-AP increases, the cochannel interference from neighboring Femto-AP get stronger
 - Reduce Spectral Efficiency (SE)

- Network Architecture
 - Typical RNC is in charge of radio resource management of about 100 BSs
 - Introducing Femto-APs increases the burden to RNCs
 - Because of flat all-IP network of WiMAX, more radio resource control needs to be implemented in Femto-APs for distributed management
 - New infrastructure support for seamless mobility management

- Interference Management
 - Power control is required in Femto-AP to avoid interference for outdoor users
 - Marcocell-to-Femtocell
 - Femtocell-to-Femtocell
 - Femtocell-to-Marcocell
 - Dead zone problem

-- For advanced interference mitigation strategies, good synchronization is essential

- Synchronization
 - The synchronization requirement for WiMAX is less stringent than 2G or 3G
 - 2ppm vs. 0.05ppm
 - However, 1 μ s may be required for 4G OFDMA operation
 - Candidate calibration strategies
 - IEEE 1588
 - Self-adaptive timing recovery protocol
 - Master-Slave structure
 - 100ns timing accuracy
 - GPS
 - Popular and low cost solution for localization
 - Reception problem for indoor environment

- Security and Performance
 - More sophisticated registration and authentication process and encryption of IP packets are necessary
 - Femto-APs utilize local ISP networks, which may be different from the operator's network
 - Collaboration and service level agreement between cellular and ISP operators are required
 - Cellular operator has no control over the channel and cannot prioritize voice packets from Femto-APs
 - For guarantying end-t-end QoS

- Self-Organization and autonomous operation
 - WiMAX networks requires a self-organization at both marco/micro BSs and Femto-APs because of the flat network architecture
 - E.g. handover are directly controlled by the BSs and Femto-APs
 - Femto-AP shall be a plug-and-play device that can integrate itself into the network without user intervention

Market Forecasts

By 2012, there will be 36 million shipments with an installed base of 70 million femtocell serving 150 million users

Femtocells by Feature

Conclusions

- Unsatisfactory coverage and the increasing number of high-data-rate application are two driving forces for femtocell development
- Femtocells have the potential to provide high-quality network access to indoor users at low cost
 - Improve coverage
 - Provide huge capacity gain
- From technical standpoint, some challenges shall be overcome
 - New network architecture
 - Interference mitigation
 - Synchronization
 - End-to-end QoS support
 - Seamless handover support