A Framework for Reliable Routing in Mobile ad Hoc Network

Zhenqiang Ye Srikanth V. Krishnamurthy Satish K. Tripathi

INFOCOM 2003

Outline

- Introduction
- AODVM routing
- Performance of AODVM
- A framework for reliable routing
- Performance evaluation of R-node deployment strategies
 Conclusions

Introduction

o Node failures :

Harsh fading channel Power constrained (Battery drain) Node carried by pedestrains

 Design a *multipath routing* framework for providing enhanced robustness to node failures

Introduction

 We choose AODV as a candidate protocol and make modification to it, to facilitate the discovery of node disjoint paths from source to destination.

Node disjoint

Node disjoint path do not have any nodes in common , except the source and destination

Introduction

Figure 5. Illustration of Property 1. S floods a packet in the network. A, B and C are neighbors of S. J transmits only the first arriving copy of the packet (from A or B) and suppresses the latter. Two copies are received at I, one via C and the other via A or B. Thus I finds two node-disjoint paths to S.

8/28 2003

AODVM routing

- AODVM (Ad hoc On-Demand Distance Vector Multipath)
- RREP packet contains a field called "*last_hop_ID*"
- Intermediate node receives RREP from its neighbor and add a routing entry to its routing table

Fig. 2. (a) Structure of the each RREQ table entry in AODVM (b) Structure of the each routing table entry in AODVM

AODVM routing

- When destination receives duplicate copies of the RREQ packet from other neighbor, it update its sequence number and generates RREP for each of them.
- When an intermediate node that receives an RREP message cannot forward it, it generates an Route Discovery Error message to the neighbor that forward RREP
- The neighbor receives the RDER that will attempt to forward the RREP to a different neighbor

- The average number of node-disjoint paths that are discovered per route inquiry
- The probability that number of node-disjoint paths discovered in any route inquiry is no less than a certain preset threshold *K*
- Case 1 : 250 nodes Case 2 : 350 nodes Case 3 : 500 nodes uniformly in 2500m*2500m rectangular region

8/28 2003

9

8/28 2003

10

8/28 2003

- We note that when the node density is high , we can find an acceptable number of node disjoint paths to provide robustness to node failures
- In order to route information reliable, a certain number of "reliable nodes" should be placed in network.
- We propose that a set of these reliable nodes be deployed in ad hoc network for the purpose of increasing reliability and security

o R-nodes

Those nodes be allowed to participate in routing along multiple routes between the same sourcedestination pair

o Reliable segment

A segment is joined between two R-nodes

o Reliable path

Be make up by number of Reliable segment

There are three R-nodes R1, R2, and R3. The value of *K* is three

Fig. 7. (a) The maximum-degree node (the black node) is the bottleneck node in the network. (b) The minimum-degree node (the black node) is the bottleneck node in the network.

- Deploying R-nodes to support reliable routing framework
- A min-Cut algorithm and our modification
- The distributed R-node deployment strategy
- Modifications to AODVM

- In order to determine where the R-nodes ought to be placed, it is required that each node compute the *min-cut of a partial* graph
- It then runs the min-cut algorithm with the following *modification*:
- -> The outermost links are contracted first, and the links that are closest to the node are contracted last.

A min-Cut algorithm and our modification

• A min-Cut algorithm and our modification

8/28 2003

The distributed R-node deployment strategy

- Each node periodically broadcast a HELLO message to its neighbor
- A node periodically calculates its min-cut value
- An R-node compare the min-cut value and the min-cut set size of the nodes in its Khop neighbor

Modifications to AODVM

- In each RREP packet, we include a "reliability flag"
- When RREP passes through an intermediate node, this flag is set to *RELIABLE* if this intermediate node is R-node
- Otherwise , this flag is set to NORMAL

Performance evaluation of R-node deployment strategies

Fig. 10. Comparison of the performance of the various R-node deployment strategies with $\kappa = 3$.

8/28 2003

Performance evaluation of R-node deployment strategies

Fig. 11. Comparison of the performance of the various R-node deployment strategies with $\kappa = 4$.

8/28 2003

Performance evaluation of R-node deployment strategies

Fig. 12. Effects of mobility on the distributed R-node deployment strategy. 8/28 2003 Chih-Jen Wu , MNET Lab.

- Our objective was to provide robustness to both intermittent and long term node failures in ad hoc network
- Use of multiple node-disjoint route could potentially provide some tolerance to nodefailures
- We show that our strategy has the best performance in dynamic topology changes due to low mobility patterns