PROMISE: Peer-to-Peer Media Streaming Using CollectCast

4/7 2004 Shou-Fon Wu

1

Outline

- Introduction
- Overview for PROMISE
 - CollectCast
- Selecting best peers
 - 3 methods
- Simulation
- Conclusion

Introduction

- PROMISE is a p2p media streaming system based on CollectCast.
- CollectCast: one receiver collects data from multiple senders.
- The main problem is how to select, monitor, and switch sending peers for each p2p streaming session.

Introduction

- CollectCast performs 3 main functions:
 - 1. Inferring the information for the selection of the senders.
 - 2. Monitor the status of peers.
 - 3. Dynamically switching active senders and standby senders.

CollectCast

• Candidate senders:

All the senders that we may choose.

• Active senders:

The senders we really choose.

- Standby senders: The reminder senders.
- Example:

Candidate senders {P1,P2,P3,P4,P5,P6,P7}

Active senders {P1,P3,P4}

Standby senders {P2,P5,P6,P7}

PROMISE architecture

Receiving peer

Senders are chosen based on the current network condition and the reliability of peers to render the best quality⁶

(1)Random selection:

- Randomly chooses a number of senders
- Just to fulfill the aggregate rate requirement.

In random selection, we may choose P1,P3,P4 as active senders

(2) End-to-end selection:

- Estimates the "goodness" of path from each candidate sender to the receiver.
- Based on the quality of the individual paths.
- Based on the availability of each peer.

End-to-End Selection

(3) Topology-aware selection

- Infers the underlying topology and its characteristic.
- Considers the goodness of each segment of path.
- Avoid the shared segment.

Topology-Aware Selection

Example for Topology-Aware Selection

• Definition: $G_p = A_p \prod_{i \to j \in p \to r} w_{i \to j}^{(p)} x_{i \to j}$

X is a binary variable W is weight A is availability

• for some active set {P3,P5,P6} G = 1*0.8+1*0.8+ 0.25/0.50 *0.9=2.09 for $W_{5\to 3}^{(P_5)} = 1$

Simulation

14

Simulation

Simulation

Conclusion

- PROMISE matches a requesting peer with a set of supplying peers.
- To achieve the best streaming quality.

Other issues

- Compared to reputation system on p2p network.
- They both provide solution to media streaming in p2p network.
- Their algorithms are different but solve the same problem.

Other issues

- The difference between PROMISE system and reputation system:
 - PROMISE computes the goodness of each set
 - Reputation system computes the reputation score of each peer