Energy-Efficient Target Coverage in Wireless Sensor Networks

Mihaela Cardei, My T. Thai, Yingshu Li, Weili Wu

Annual Joint Conference of the IEEE Computer and Communications Societies, 2005.
INFOCOM 2005
Outline

♦ Introduction
♦ Related Work
♦ Target Coverage Problem
♦ Solutions to Compute Maximum Set Covers
♦ Simulation
♦ Conclusion
Introduction

- Application of sensor networks
 - National security
 - Surveillance
 - Health care
 - Environment monitoring

- A critical issue in wireless sensor networks
 - Power scarcity
 - Transmit: 0.38w~0.7w, Receive: 0.36w
 - Idle: 0.34w, Sleep: 0.03w
 - Communication/computation power usage ratio >1000

Power saving techniques can generally be classified in the following categories:

- Schedule the wireless nodes to alternate between active and sleep mode.
- Power control by adjusting the transmission range of wireless nodes.
- Energy efficient routing, data gathering.
- Reduce the amount of data transmitted and avoid useless activity.
Related Work

♦ The coverage problems can be classified
 ✓ Area coverage
 ✓ Point (or target) coverage

♦ Cardei and Du [2]
 ✓ Disjoint sensor sets (disjoint set covers)
 ✓ every cover completely monitor all the target points

Related Work (cont.)
Target Coverage Problem

♦ Targets: know location, need to be continuously observed
♦ Sensors: a large number of sensors randomly deployed closed to the targets
♦ Basic station: a central data collector node
♦ In order to enlarge the lifetime
 – Sensor nodes have two states
 • Active or Sleep
 – Sensors send their location information to the BS
 – BS executes the sensor scheduling algorithm
 – and broadcast the schedule to all sensors
Definition: target coverage problem

- m targets know location
- n sensors randomly are deployed
- Schedule the sensor nodes activity
 - Such that all the targets are covered
- Maximum the network lifetime
- Lifetime of each sensor: $[0, 1]$
Maximum Set Covers (MSC)

- All sensors are active continuously
 - Network lifetime
 - 1
Maximum Set Covers (MSC)

- Cardei and Du [2]
 - $S_1 = \{s_1, s_2\} = 1$
 - $S_2 = \{s_3, s_4\} = 1$
 - Network lifetime
 - $1+1=2$
Every sensor is part of more than one set
- $S_1 = \{s_1, s_2\} = 0.5$
- $S_2 = \{s_2, s_3\} = 0.5$
- $S_3 = \{s_1, s_3\} = 0.5$
- $S_4 = \{s_4\} = 1$
- Network lifetime
 - $0.5 + 0.5 + 0.5 + 1 = 2.5$
Solutions to Compute Maximum Set Covers

♦ Two heuristics for the MSC problem
 ✔ Linear Programming based heuristic
 \textit{(LP-MSC Heuristic)}
 ✔ Greedy heuristic
 \textit{(Greedy-MSC Heuristic)}
Solutions to Compute Maximum Set Covers

♦ LP-MSC Heuristic
 – Model the MSC problem as an Integer Programming
 – use the relaxation technique to design a Linear Programming based heuristic
Solutions to Compute Maximum Set Covers

Greedy-MSC Heuristic (C, R, w)

1: set lifetime of each sensor to 1
2: SENSORS = C
3: i = 0
4: while each target is covered by at least one sensor in SENSORS do
5: /* a new set cover C_i will be formed */
6: i = i + 1
7: C_i = 0
8: TARGETS = R
9: while TARGETS ≠ 0 do
10: /* more targets have to be covered */
11: find a critical target r_critical ∈ TARGETS
12: select a sensor s_u ∈ SENSORS with greatest contribution, that covers r_critical
13: C_i = C_i ∪ s_u
14: for all targets r_k ∈ TARGETS do
15: if r_k is covered by s_u then
16: TARGETS = TARGETS - r_k
17: end if
18: end for
19: end while
20: for all sensors s_j ∈ C_i do
21: lifetime_s_j = lifetime_s_j - w
22: if lifetime_s_j == 0 then
23: SENSORS = SENSORS - s_j
24: end if
25: end for
26: end while
27: return i-number of set covers and the set covers C_1, C_2, ..., C_i
Solutions to Compute Maximum Set Covers

\[C = \{s_1, s_2, s_3\} \]
\[R = \{r_1, r_2, r_3\} \]
\[W=0.1 \]
\[r_1 \text{ can be covered by } s_2 \text{ and } s_3 \]

Select \(s_1 \)
\(s_1 \) also covers \(r_2 \)
Now, we can select \(s_2 \) or \(s_3 \) to cover \(r_3 \)

Select \(s_2 \)
\(\text{lifetime}_{s1} = \text{lifetime}_{s1} - W \)
\(\text{lifetime}_{s2} = \text{lifetime}_{s2} - W \)
Simulation

- 500m * 500m area
- Number of sensor nodes: 25~75
- Number of targets: 5~15
- The sensing range: 100~300 m
Simulation

the sensing range is 250m
Simulation

10 targets randomly deployed

More sensing range, more power consumption ??
Simulation

<table>
<thead>
<tr>
<th>Sensors</th>
<th>LP-MSC</th>
<th>Greedy-MSC</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Lifetime</td>
<td>Runtime (s)</td>
</tr>
<tr>
<td>25</td>
<td>10.004</td>
<td>12.428</td>
</tr>
<tr>
<td>30</td>
<td>12.715</td>
<td>24.235</td>
</tr>
<tr>
<td>35</td>
<td>13.320</td>
<td>32.237</td>
</tr>
<tr>
<td>40</td>
<td>15.293</td>
<td>52.886</td>
</tr>
<tr>
<td>45</td>
<td>17.957</td>
<td>127.843</td>
</tr>
<tr>
<td>50</td>
<td>18.236</td>
<td>220.738</td>
</tr>
<tr>
<td>55</td>
<td>21.405</td>
<td>334.361</td>
</tr>
<tr>
<td>60</td>
<td>24.456</td>
<td>511.095</td>
</tr>
<tr>
<td>65</td>
<td>27.318</td>
<td>3262.181</td>
</tr>
<tr>
<td>70</td>
<td>30.260</td>
<td>11789.452</td>
</tr>
<tr>
<td>75</td>
<td>33.410</td>
<td>2976.460</td>
</tr>
</tbody>
</table>
Conclusion

♦ Maximum the network lifetime of the target coverage problem
 – By organizing the sensor nodes in non-disjoint set covers

♦ Propose two efficient heuristics
 – Linear Programming formulation
 – Greedy approach
 • Low running time
 • Is more scalable to large sensor networks
Thank you
Integer Programming Formulation of the MSC Problem

Maximize \(t_1 + \ldots + t_p \)

subject to \(\sum_{j=1}^{p} y_{ij} \leq T_i \) for all \(s_i \in C \)

\[\sum_{i \in C_k} y_{ij} \geq t_j \] for all \(r_k \in R, j = 1, \ldots, p \)

where \(0 \leq y_{ij} \leq t_j \leq 1 \)

a set of \(n \) sensor nodes \(C = \{ s_1, s_2, \ldots, s_n \} \)
a set of \(m \) targets \(R = \{ r_1, r_2, \ldots, r_m \} \)

Let us set a bound \(p \) for the number of set-covers

\(C_k = \{ i \mid \text{sensor } s_i \text{ covers target } r_k \} \)

\(x_{ij} \), boolean variable, for \(i = 1..n \) and \(j = 1..p \);
\(x_{ij} = 1 \) if sensor \(s_i \) is in the set cover \(S_j \), otherwise \(x_{ij} = 0 \).

\(t_j \in \mathbb{R}, 0 \leq t_j \leq 1 \), for \(j = 1..p \), represents the time allocated for the set cover \(S_j \).

\(y_{ij} = x_{ij} t_j \)
LP-MSC Heuristic

Step 1 Solve the linear programming LP formulated above. Let \((y_{ij}^*, t_j^*), i = 1..n \text{ and } j = 1..p\), be the optimal solution of the LP. Set the network lifetime \(C = 0\).

Step 2 The first approximation solution can be obtained as follows:

```plaintext
for all \( j = 1 \text{ to } p \) do
  set \( y_{ij}^0 = 0 \) for all sensors \( s_i \in C \)
  set \( t_j^0 = \min_k \max_{i \in C_k} y_{ij}^* \)
  for all \( k = 1 \text{ to } m \) do
    / * for each \( r_k \in R \) */
    choose an \( i \in C_k \) such that \( y_{ij}^* \geq t_j^0 \) and set
    \( y_{ij}^0 = t_j^0 \)
  end for
end for
```

Step 3 We iteratively repeat step 1 and step 2.