An Economic Model for Resource Exchange in Mobile Peer to Peer Networks

Present:
Kun-Yo Lin
Outline

- Introduction
- System Model
- Resource Types
- Producer-Paid Resources
- Consumer-Paid Resources
- Experimental Analysis
- Conclusion
Introduction – (1)

- Consider an urban area with thousands of vehicles
 - Drivers and passengers are interested in information relevant to their trip

- Using database stored at fixed site, it may have some potential drawback:
 1. responses may be outdated
 2. not real-time
 3. costly
 4. not robust
Introduction – (2)

- We explore a new paradigm that is based on peer-to-peer communications
- Advantages:
 - First, better information accuracy; especially for real-time information
 - Second, cheap
 less than a cent per day, even if the communication is through all day
Introduction – (3)

- Opportunistic peer-to-peer system
 - Transmission range
 - Resource propagation
- Two type of resources
 - Producer-paid resources
 - Consumer-paid resources
- Two incentive mechanisms for two type
System Model

- **Resource Model**
 - Spatial / temporal

- **Virtual Currency**
 - Virtual Currency = coin, it is bought by real money

- **Station to Vehicle Transmission**
 - There are fixed stations and moving objects in system

- **Vehicle to Vehicle Exchange**
 - When A meet B, A will buy resources that A is interested in from B
Resource Types

- **Producer-Paid Resources**
 - Resources which the owner is interested in advertising are producer-paid
 - Example: gas station, car breakdown, emergency

- **Consumer-Paid Resources**
 - Resources which the consumer is interested in receiving are consumer-paid.
 - Example: Available parking slots

- **Producer/Consumer-Paid Resources**
Producer-Paid Resources

- **First setup Values**
 - A Producer can decide Initial budget C for R, and commission fee f

- **How to incentive**
 - If A has the information R, and A encounters B
 - nothing happened (both have that information)
 - A increase its coin counter by f
 - A sets its budget $(C - f) / 2$, and B does the same thing
 - If $(C - f) / 2 < f$, then A and B stop transmitting R
Consumer-Paid Resources (1)

- Two Mode for Consumer-Paid Resources
 - Consumer
 - Pay for Resources
 - Broker
 - Take information of resource, but can not view it
 - Earn from other Consumers
 - Switch between two mode
 - When & Why
Consumer-Paid Resources (2)

- **Price of a Resource**
 - \(F(R) = -\alpha \cdot t - \beta \cdot d \) \((\alpha, \beta \geq 0)\)
 - \(t \): time length since the creation of \(R \)
 - \(d \): the distance from the location of \(R \)
 - \(\alpha \): constant
 - \(\beta \): constant
Consumer-Paid Resources (3)

- How should α and β be determined?
 - $PT = t + \frac{d}{v}$ (v is speed of vehicle)
 - Simply set the relevance is $-PT$ to $F(R)$
 - So that, $F(R) = -t - \frac{d}{v}$
 - $F(R) = -\alpha t - \beta d$ ($\alpha, \beta \geq 0$)

 - Depend on the two equations above,
 - We can set $\alpha = 1$, $\beta = 1/v$
Consumer-Paid Resources (4)

- Base on the relevance function, the price is

\[
P(R) = \begin{cases}
E - (\alpha \cdot t + \beta \cdot d) & \alpha \cdot t + \beta \cdot d < E \\
0 & \alpha \cdot t + \beta \cdot d \geq E
\end{cases}
\]

- \(E\) is the value of the resource to a consumer, when the parking slot becomes available.
- \(E, \alpha, \beta\) may differ for different resources.
Two “Paid” comparison table

<table>
<thead>
<tr>
<th>producer-paid</th>
<th>sender (A)</th>
</tr>
</thead>
<tbody>
<tr>
<td>receiver (B)</td>
<td>A increases its coin counter by f and sets the budget of R to be $(C-f)/2$. B sets the budget of R to be $(C-f)/2$.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>consumer-paid</th>
<th>sender (A)</th>
</tr>
</thead>
<tbody>
<tr>
<td>receiver (B)</td>
<td>consumer</td>
</tr>
<tr>
<td></td>
<td>broker</td>
</tr>
</tbody>
</table>

Both-Paid Resource

Mnet - Lab Meeting

2004/11/11
Experimental Analysis

- Simulation Setup (producer)
 - Parameters
 - Traffic speed v
 - $(v: 10 \sim 50 \text{ miles/hour} , + = 10)$
 - Transmission range r
 - $(r: 10, 50, 100, 150, 200 \text{ meters})$
 - Traffic density g
 - $(g: 100, 500 \text{ objects/mile*mile})$
 - Diameter of coverage area d
 - $(d: 0.4 \sim 2.0 \text{ mile} , + = 0.4)$

A coverage diamond area with diameter 6 blocks
Simulation results – (1)

- Percentage of reached vs. initial budget (f=0.1)

Other Parameters

- $r = 50$ meters
- $v = 40$ miles/hour
- $d = 2$ miles

Mnet - Lab Meeting
Simulation results – (2)

- Cost per reached object

Other Parameters

- $r = 50$ meters
- $v = 40$ miles/hour
- $d = 2$ miles

2004/11/11
Simulation results – (3)

- Impact of size of coverage area

Other Parameters

\[r = 50 \text{ meters} \]
\[v = 40 \text{ miles/hour} \]
Simulation results – (4)

- Impact of transmission range

Other Parameters

\(v = 40 \) miles/hour

\(d = 2 \) miles

2004/11/11
Simulation results – (5)

- Impact of traffic speed

Other Parameters

- \(r = 50 \) meters
- \(d = 2 \) miles
Analysis of Consumer-Paid policy

- Blind search vs. information guided search
 - **Blind search (BS):**
 - A consumer drives around the area, and he occupies the first resource that is available
 - **Information guided search (IGS):**
 - Start with a blind search, until a resource is available, and he occupies it
 - Or get information from the system, resource R is available; if another R’ is closer, he will go to R’
 - **Result**
 - The IGS search time is half of BS search time
Conclusion

- Peer-to-Peer system
 - For vehicle to exchange resources
- Two type of resources
 - Producer-paid resources
 - Consumer-paid resources
- Incentive mechanisms
 - For two types