Dynamic Layer Management in Superpeer Architectures

Presented by 曾胤燁
2006/04/27

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS
NOVEMBER 2005
Outline

- Introduction
- Workload Model
- Dynamic Layer Management Algorithm (DLM)
- Performance Evaluation
- Conclusion
Introduction

- Superpeer unstructured P2P systems have been found to be very effective by dividing the peers into two layers, super-layer and leaf-layer.
 - Message flooding is only conducted among superpeer.
Problems

- What is the optimal size ratio of leaf-layer to super-layer?
 - Too many superpeers – pure P2P systems
 - Too few superpeers – centralized P2P systems
Problems(2)

- How can the optimal ratio be maintained?
- What types of peers should be elected to super-layer?
Outline

- Introduction
- Workload Model
- Dynamic Layer Management Algorithm (DLM)
- Performance Evaluation
- Conclusion
Workload Model

- n peers, n_l peers are leaf-peers
- n_s peers are superpeers
- Each leaf-peer connects to m superpeers.
- Each superpeer connects to k_s other superpeers and k_l leaf-peers.
- $\eta = n_l / n_s$ (layer size ratio)
- W_{on} - the workload on the overall network
- W_{sp} - the workload on a superpeer
- The workloads can be divided into three parts:
 - Connection Workload
 - Query Workload
 - Relay Workload
Connection Workload (CW)

- CW is defined as the traffic overhead incurred to maintain the connections to the neighboring peers.
- CW is related to the size and stability of the neighboring peer set.
Connection Workload

\[W_{sp_cw} = \frac{k_l}{t_l} + \frac{k_s}{t_s} = \frac{mn\eta}{t_l} + \frac{k_s}{t_s} \]

\[W_{on_cw} = \frac{n_l m}{t_l} + \frac{n_s}{t_s} (k_l + k_s) = \frac{mn\eta}{(1 + \eta)t_l} + \frac{n(m\eta + k_s)}{(1 + \eta)t_s} \]

- \(W_{sp_cw} \) and \(W_{on_cw} \): the portions of connection workload in \(W_{sp} \) and \(W_{on} \)
- \(t_l \) and \(t_s \): the average lifetimes of neighboring leaf-peers and superpeers
Query Workload (QW)

- QW is defined as the traffic overhead incurred for a peer to process the queries generated by its leaf neighbors and itself.
- QW is proportional to the number of leaf neighbors and the query frequency.
Query Workload

\[W_{sp_qw} = k_l f = m\eta f \]

\[W_{on_qw} = \frac{nm\eta f}{1 + \eta} \]

- \(W_{sp_qw} \) and \(W_{on_qw} \) : the portions of query workload in \(W_{sp} \) and \(W_{on} \)
- \(f \) : the query frequency of a peer
Relay Workload (RW)

- RW is defined as the traffic overhead incurred to process queries relayed form the superpeer neighbors.
To cover \(p \) peers, the number of superpeers that should be queried has a lower bound of \(\frac{p}{1+k_l} \) and an upper bound of \(\frac{mp}{m+k_l} \).

- A superpeer can be viewed to represent \(k_l+1 \) peers.

\[
\begin{align*}
 p_s k_l &= p_l m \\
 p_s k_l &= p_l
\end{align*}
\]

Theorem 1
\[\frac{(p_s \times k_i)}{m} \leq p_i \leq p_s \times k_i \]
\[\Rightarrow p - p_s \leq p_s \times k_i \leq (p - p_s)m \]
\[\Rightarrow \frac{p}{(1 + k_i)} \leq p_s \leq \frac{mp}{(m + k_i)} \]

When \(p_s << n_s \), \(p_s \) is very close to \(\frac{p}{(1 + k_i)} \)
To cover $p_s = p/(1+k_l)$ superpeers, the number of query message range from $(p/(1+k_l))-1$ to $pk_s/(1+k_l)$

- The ideal search algorithm should only query each peer once. Therefore, it can only use p_s-1 message.
- For an inefficient search algorithm, each link relays the same query at most twice. The maximum number of links is $p_s*k_s/2$, so the maximum number of messages is $p_s k_s$
Relay Workload

- Each peer initiates f queries per time unit and each superpeer receives $(1+k_l)f$ queries from itself and its leaf neighbors.

 the query frequency of the total network $(1+k_l)n_sf$

- From theorem 2, the number of messages used by a query ranges from

 $(p/(1+k_l))-1$ to $pk_s/(1+k_l)$
Relay Workload

\[W_{on-rw(min)} = (1 + k_l)n_s f \left(\frac{p}{1 + k_l} - 1 \right) = n_s f (p - 1 - k_l) \]
\[= \frac{n_f}{1 + \eta} (p - 1 - m \eta) \]

\[W_{on-rw(max)} = n_s f p k_s = \frac{f p k_s n}{1 + \eta} \]

\[W_{sp-rw(min)} = (p - 1 - m \eta) f \] and \[W_{sp-rw(max)} = f p k_s \].

\[W_{sp-rw} \text{ is } \frac{1}{n_s} \text{ of } W_{on-rw} \]
Optimal Layer Size Ratio

- \(W = W_{cw} + W_{qw} + W_{rw} \)

\[
W_{sp(max)} = \frac{mn \eta}{t_l} + \frac{k_s}{t_s} + m \eta f + f p k_s
\]
\[
= \left(\frac{1}{t_l} + f \right) m \eta + \frac{k_s}{t_s} + f p k_s,
\]

\[
W_{on(max)} = \frac{mn \eta}{(1 + \eta) t_l} + \frac{n(m \eta + k_s)}{(1 + \eta) t_s} + \frac{mn \eta f}{1 + \eta} + \frac{f p k_s n}{1 + \eta}
\]
\[
= \frac{n}{1 + \eta} \left(\frac{m \eta}{t_l} + \frac{m \eta + k_s}{t_s} + m \eta f + f p k_s \right).
\]
Optimal Layer Size Ratio

\[W = \alpha W_{sp} + \beta \frac{W_{on}}{\eta} \] \hspace{1cm} (1)

- Since both \(W_{sp} \) and \(W_{on} \) are functions of \(\eta \), by differentiating we can obtain optimal value \(\eta \) as

\[\eta' = \sqrt{\frac{B - C}{A}} - 1, \]
where, for the most efficient search algorithm,

\[A = \frac{m\alpha}{t_l}, \quad B = \left(\frac{k_s}{t_s} + fp - f \right) \beta, \quad \text{and} \quad C = \left(\frac{1}{t_l} + \frac{1}{t_s} \right) m\beta, \]

while, for the most inefficient search algorithm,

\[A = \left(\frac{1}{t_l} + f \right) m\alpha, \quad B = \left(\frac{1}{t_s} + fp \right) k_s\beta, \quad \text{and} \]

\[C = \left(\frac{1}{t_l} + \frac{1}{t_s} + f \right) m\beta. \]
Dynamic layer management algorithm

1. Information Collection
2. Maintaining Appropriate Layer-Size-Ratio
3. Scaled Comparisons of Capacity and Age
4. Promotion or Demotion
1. Information Collection

- Peers exchange information with their superpeers to know their leaf neighbor number.
- Peers report their *age* and *capacity* to their superpeers.
2. Maintaining Appropriate Layer-Size-Ratio

- Due to the randomness of the neighbor selection mechanism in superpeer systems, the current numbers of leaf neighbors of superpeers can reflect the current layer size ratio.
- l_{nn}: the leaf neighbors number
- $\mu = \log \left(\frac{l_{nn}}{k_1} \right)$.
- $\mu > 0$: too few superpeers
- $\mu < 0$: too many superpeers
3. Scaled Comparisons of Capacity and Age

- For each peer that runs DLM, it uses two counting variables, Y_{capa}, Y_{age}.

\[
\text{for all peer } d_i \text{ in } G(d) \hspace{1cm} \\
\text{if } (\text{capacity}(d_i) \times X_{\text{capa}} > \text{capacity}(d)) \\
Y_{\text{capa}} += 1/(\text{size of } G(d)); \\
\text{if } (\text{age}(d_i) \times X_{\text{age}} > \text{age}(d)) \\
Y_{\text{age}} += 1/(\text{size of } G(d));
\]

- The value of X_{capa} and X_{age} are adjusted according to the value of μ.
4. Promotion or Demotion

- We use two threshold variables $Z_{\text{capa}}, Z_{\text{age}}$ in the determination.
- For a leaf-peer, if Y_{age} and Y_{capa} are smaller than Z_{capa} and Z_{age}, it will be promoted.
- For a superpeer, if Y_{age} and Y_{capa} are larger than Z_{capa} and Z_{age}, it will be demoted.
Performance Evaluation

Simulation Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>n</td>
<td>50,000</td>
<td>Number of peers in the network</td>
</tr>
<tr>
<td>n_l</td>
<td>48,780</td>
<td>Number of preferred leaf-peers</td>
</tr>
<tr>
<td>n_s</td>
<td>1,220</td>
<td>Number of preferred super-peers</td>
</tr>
<tr>
<td>η</td>
<td>40.0</td>
<td>Layer size ratio</td>
</tr>
<tr>
<td>m</td>
<td>2</td>
<td>Number of super-peer neighbors of a leaf-peer</td>
</tr>
<tr>
<td>k_l</td>
<td>80</td>
<td>Average number of leaf-peer neighbors of a super-peers</td>
</tr>
<tr>
<td>k_s</td>
<td>3</td>
<td>Average number of super-peer neighbors of a super-peers</td>
</tr>
<tr>
<td>t_l</td>
<td>3.5</td>
<td>Average duration time of leaf-peers</td>
</tr>
<tr>
<td>t_s</td>
<td>50</td>
<td>Average duration time of super-peers</td>
</tr>
<tr>
<td>f</td>
<td>0.3</td>
<td>Average number of queries of a peer per minute</td>
</tr>
<tr>
<td>p</td>
<td>3,000</td>
<td>Number of covered peers to ensure some fixed success rate</td>
</tr>
</tbody>
</table>
Weighted workload of most efficient search \((\alpha = 0.5, \beta = 0.5)\).

\[
\eta' = \sqrt{\frac{B-C}{A}} - 1 \approx 38,
\]
Weighted workload of most inefficient search \((\alpha = 0.5, \beta = 0.5)\).

\[
\eta_1' = \sqrt{\frac{B-C}{A}} - 1 \approx 51.
\]
Layer Size Comparison

Size

Simulation Time (Minute)

Super Layer
Leaf Layer
Conclusion

- In this paper, we purpose a workload model by analyzing the workload on one superpeer as well as on the total network.
- Based on this model, we can obtain an optimal layer size ratio.
- By DLM, we can adaptively elect peers and adjust them between superlayer and leaf-layer.
Thank you😊