Sprinkler: A Reliable and Energy Efficient Data Dissemination Service for Extreme Scale Wireless Networks of Embedded Devices

IEEE TRANSACTIONS ON MOBILE COMPUTING, JULY 2007

Presented by Chia-Yi Lien
September 27, 2007
Outline

- Introduction
- Sprinkler
 - System Model
 - Preliminaries
 - Algorithms to Compute CDS and D-2 Vertex Coloring
 - Data Dissemination Protocol
- Performance
- Conclusion
- Discussion
Introduction

- The objective is to minimize the number of packet transmission and the latency, in that order.

<table>
<thead>
<tr>
<th>Operation</th>
<th>Current Draw</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Mote</td>
</tr>
<tr>
<td>Microprocessor and Idle radio</td>
<td>8mA</td>
</tr>
<tr>
<td>Packet Reception</td>
<td>16mA</td>
</tr>
<tr>
<td>Packet Transmission</td>
<td>24mA</td>
</tr>
</tbody>
</table>
Outline

- Introduction
- Sprinkler
 - System Model
 - Preliminaries
 - Algorithms to Compute CDS and D-2 Vertex Coloring
 - Data Dissemination Protocol
- Performance
- Conclusion
- Discussion
System Model

- R is the reliable communication radius of the device

- Density assumption
 - If R is the reliable communication radius of the device, then every square of length $\frac{R}{\sqrt{5}}$ contains at least one device
Preliminaries (1/2)

- Dominating set (DS)
 - A DS of a graph $G=(V,E)$ is a subset V' of V such that every vertex $v \in V$ is either in V' or adjacent to some member of V'
Preliminaries (2/2)

A bidimensional grid $B(1)$ of size $r \times c$ has r rows and c columns, indexed, respectively, from 0 to $r-1$ (from top to bottom) and from 0 to $c-1$ (from left to right), with $r \geq 1$ and $c \geq 1$.
Outline

- Introduction
- Sprinkler
 - System Model
 - Preliminaries
 - Algorithms to Compute CDS and D-2 Vertex Coloring
 - Data Dissemination Protocol
- Performance
- Conclusion
- Discussion
Algorithms to Compute CDS and D-2 Vertex Coloring (1/9)

- **Assumption**
 - Let $G = (V, E)$ be enclosed in the smallest rectangular area of length $r(R'/\sqrt{5})$ and breadth $c(R'/\sqrt{5})$, where r, c are positive integers, $3 \leq r \leq c$, and $R' = R$.
 - Rectangle is divided into square-shaped clusters of length $R'/\sqrt{5}$
 - One node is selected from each cluster as a clusterhead
 - Only the clusterhead nodes are used to construct a CDS M
 - Note that both rectangle and the grid of squares are virtual
Algorithms to Compute CDS and D-2 Vertex Coloring (2/9)

- **CDS Computation**

 - A node $u(i, j) \in M$, where $0 \leq i \leq r - 1$ and $0 \leq j \leq c - 1$, if

 - $r \mod 3 \equiv 0$: $[i \mod 3 \equiv 1] \lor [(i \mod 3 \not\equiv 1) \land (0 < i < r - 1) \land (j = 0)]$.
 - $r \mod 3 \equiv 1$: $[i \mod 3 \equiv 0] \lor [(i \mod 3 \not\equiv 0) \land (j = 0)]$.
 - $r \mod 3 \equiv 2$: $[i \mod 3 \equiv 1] \lor [(i \mod 3 \not\equiv 1) \land (i \not\equiv 0) \land (j = 0)]$.

Algorithms to Compute CDS and D-2 Vertex Coloring (3/9)

- **CDS** of bidimensional grid $B(1)$

![Diagram of CDS](image)

- $r \mod 3 = 0$
- $r \mod 3 = 1$
- $r \mod 3 = 2$
Algorithms to Compute CDS and D-2 Vertex Coloring (4/9)

- CDS computation for random deployment
Algorithms to Compute CDS and D-2 Vertex Coloring (5/9)

- **D-2 Coloring**
 - Only nodes in M will transmit packets
 - Let $C(i, j)$ be the D-2 color of a node $u(i, j) \in M$ where $0 \leq i \leq r - 1$ and $0 \leq j \leq c - 1$
 - $C(i, j)$ is computed using the following formula:
 - $(i \mod 3 \equiv 0) \land (i \mod 6 \equiv 0)$: $j \mod 11$.
 - $(i \mod 3 \equiv 0) \land (i \mod 6 \not\equiv 0)$: $(j + 6) \mod 11$.
 - $(i \mod 3 \equiv 1) \land (i \mod 6 \equiv 1) \land (j = 0)$: 12.
 - $(i \mod 3 \equiv 1) \land (i \mod 6 \not\equiv 1) \land (j = 0)$: 14.
 - $(i \mod 3 \equiv 2) \land (j = 0)$: $C(i - 1, 0) + 1$.
Algorithms to Compute CDS and D-2 Vertex Coloring (6/9)

- A D-2 coloring for M
 - Time complexity of D-2 coloring algorithm is O(1)
 - D-2 coloring of M requires at least 9 colors [dotted region]; Sprinkler uses 16 colors
Algorithms to Compute CDS and D-2 Vertex Coloring (7/9)

- Cluster Formation
 - Let b be the base station node that originates broadcast data
 - We assume
 - b knows locations of the four corners of the smallest rectangle of length $r \left(\frac{R'}{\sqrt{5}} \right)$ and breadth $c \left(\frac{R'}{\sqrt{5}} \right)$
 - Each node knows the nodes in its one-hop neighborhood – it knows the ID and the location of its one-hop neighbors
Algorithms to Compute CDS and D-2 Vertex Coloring (8/9)

- **Cluster Formation Algorithm**

```
if (ID = b ∨ rcv {locations of four corners})
∧¬sent → then
  if j = 0 then
    select a node u from square (i + 1, 0);
    send {locations of four corners} to u;
  end if
  select a node v from square (i, j + 1);
  send {locations of four corners} to v;
  sent := TRUE;
end if
```

The initial value of the variable sent is FALSE.
Algorithms to Compute CDS and D-2 Vertex Coloring (9/9)

- **Distributed Cluster Formation**
 - Each node in M sends at most two messages
 - Time complexity is $O(1)$. The total number of message is $O(n)$. The message size is $O(1)$.

![Graph depicting distributed cluster formation](image)
Outline

- Introduction
- Sprinkler
 - System Model
 - Preliminaries
 - Algorithms to Compute CDS and D-2 Vertex Coloring
 - Data Dissemination Protocol
- Performance
- Conclusion
- Discussion
In reality, the link reliability has more than two values.

Here divides data dissemination into two phases, viz., streaming phase and recovery phase.
Data Dissemination Protocol (2/4)

- **Streaming Phase**
 - Only the nodes in the CDS transmit packets
 - Transmission is scheduled
 - When hearing a packet, a node in the CDS synchronizes its time with that of the sender by broadcasting. [global TDMA]
 - Given a node \(u \), let \(P_u \) be the set of CDS nodes, which are closer to the base station than \(u \). The parent of \(u \) is the closest neighbor of \(u \) in the set \(P_u \).
 - A node in the CDS forwards each newly heard packet.
 - Piggybacked negative acknowledgements
 - At the end of this phase, all the nodes in CDS receive the data completely
Data Dissemination Protocol (3/4)

- Recovery Phase
 - Only the non-CDS nodes will enter this phase
 - Recovery request/data messages are sent periodically at certain intervals
 - Since it is few number of transmissions during this phase than that of the streaming phase, recovery request/data message is sent via a RTS-CTS-DATA-ACK mechanism.
 - Separate negative acknowledgement messages
 - At the end of this phase, all the non-CDS nodes receive the data completely
Power management

- It takes 14mA to turn the XSM radio on or off, which is about the same as that to receive a packet.
- During the streaming phase, u keeps its radio off except during time slots when its parent is scheduled to transmit. The periodic switching of radio by a non-CDS node is called power save mode.
- If recovery is required, u switches on its radio and keeps it on until it has received all the packets. After recovery all the packets, u again enters power save mode.
Outline

- Introduction
- Sprinkler
 - System Model
 - Preliminaries
 - Algorithms to Compute CDS and D-2 Vertex Coloring
 - Data Dissemination Protocol
- Performance
- Conclusion
- Discussion
Performance in Practice (1/3)

- Performance in an outdoor environment
Performance in Practice (2/3)

- Constant density
Performance in Practice (3/3)

- Increasing density

![Graph showing the relationship between number of nodes and transmissions/latency](image-url)
Simulation (1/3)

Deluge

Sprinkler
Simulation (2/3)

Deluge

Sprinkler
Simulation (3/3)

TABLE 4
Comparison Regarding Packet Transmission and Latency

<table>
<thead>
<tr>
<th></th>
<th>Deluge</th>
<th>Sprinkler</th>
</tr>
</thead>
<tbody>
<tr>
<td># Data Packet Senders</td>
<td>47</td>
<td>10</td>
</tr>
<tr>
<td># Packet Transmissions</td>
<td>38450</td>
<td>2400</td>
</tr>
<tr>
<td>Latency</td>
<td>514.31</td>
<td>32.56</td>
</tr>
</tbody>
</table>
Conclusion

- Sprinkler uses CDS and TDMA algorithm to minimize the number of packet transmission and the latency
Discussion

- How do we choose a proper value for R'?
- The selected CDS nodes may run out of energy quickly