Service Charge and Energy-Aware Vertical Handoff in Integrated IEEE 802.16e/802.11 Networks

IEEE INFOCOM 2007
Presented by Chun-Hung Liao
2007/8/30
Outline

- Introduction
- System Model
- Scanning Rule for WLANS
- VHO Decision Framework
- Conclusion
Introduction

- Vertical handoff (VHO), i.e., handoff across heterogeneous access networks, is considered a key feature to bring the next generation wireless communication era.

- Three generalized steps of handoff:
 - Finding candidate networks
 - Deciding a handoff
 - Executing a handoff
Introduction

- Comparison of VHO between WLAN and 3G system and VHO between WLAN and 802.16e.

- Two issues considered in this paper:
 - Finding a possible network
 - Making a decision
System Model

Two assumptions:

- The 802.16e network is assumed to be always reachable by MSTAs.
- The 802.16e network can assist MSTAs to search available 802.11 networks.
Handling MSTA’s Mobility-Related Issues

- The **velocity** of an MSTA is one of the important factors in VHO.
- The ping-pong effect.
- MSTA does not consider a VHO into WLANs when its speed exceeds a certain threshold V_{max}.
Handling MSTA’s Mobility-Related Issues

- **Proposition 1:**

 \[V_{\text{max}} \text{ should satisfy the condition } : \]

 \[\text{Prob}(s > k \xi) > \phi \]

 \[v_{\text{max}} = \frac{2r}{\kappa \zeta} \sqrt{1 - \phi^2} \]
IEEE 802.16e-Assisted 802.11 Scanning

- How do MSTAs find 802.11 APs?
- A simple method is that MSTAs should keep its WLAN interface turned on or switch it on periodically at a pre-determined time interval to detect a WLAN signal.
- Energy-efficient?
IEEE 802.16e-Assisted 802.11 Scanning

- Which information will the 802.16e network provide to aid MSTAs to discovery available 802.11 APs?
- The more detailed the information is, the more efficient scheme can be devised.
- Precious bandwidth resources.
IEEE 802.16e-Assisted 802.11 Scanning

- 1-octet overhead indicating the 802.11 AP density.
- Modify a MAC management message, called MOB_NBR-ADV.
TABLE I

Modified MOB-NBR-ADV message format.

<table>
<thead>
<tr>
<th>Syntax</th>
<th>Size</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mgmt Message Type = 53</td>
<td>8 bits</td>
<td>Bit[0] = 1, omit Operator ID field</td>
</tr>
<tr>
<td>Optional fields bitmap</td>
<td>8 bits</td>
<td>Bit[4] = 1, omit VHO fields Bit[5]-Bit[7]: reserved</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>...</td>
<td></td>
</tr>
<tr>
<td>...</td>
<td>...</td>
<td></td>
</tr>
<tr>
<td>if(Bit[4]=0){</td>
<td></td>
<td></td>
</tr>
<tr>
<td>VHO info</td>
<td>8 bits</td>
<td>The 802.11 AP density in the 802.16e cell coverage</td>
</tr>
<tr>
<td>}</td>
<td></td>
<td></td>
</tr>
<tr>
<td>N_NEIGHBORS</td>
<td>8 bits</td>
<td></td>
</tr>
<tr>
<td>...</td>
<td>...</td>
<td></td>
</tr>
<tr>
<td></td>
<td>...</td>
<td></td>
</tr>
</tbody>
</table>
Scanning Rule for WLANS

Proposition 2:

If $\rho > \rho_{\text{min}}$, an MSTA attempts to scan WLANs. Otherwise, turn off the WLAN interface until ρ is newly given by another 802.16e BS.

- 802.11 active scan & passive scan.
An active scan trial operates as follows:

- After broadcasting a Probe Request frame at a specific frequency channel, if the channel stays idle for \textit{min-ChannelTime}, declare the channel as empty.
- If the channel becomes busy within \textit{ChannelTime}, waits for \textit{maxChannelTime} in the receiving MAC state, and then handles Probe Response frames received afterwards.
- Moving to the next channel, repeat the same procedures until there is no frequency channel to scan.
Fig. 1. Probe Request frame.

(a) The scan trial fails.

(b) The scan trial is successful.

Fig. 2. Transmissions of Probe Request frames during a scan trial.
802.11 Active Scan and Energy Consumption

- If a nonempty channel is examined, the scan time T_u is
 \[T_u = T_{p_{req}} + \max\text{ChannelTime} \]

- If an empty channel is examined, the scan time T_e is
 \[T_e = T_{p_{req}} + \min\text{ChannelTime} \]
802.11 Active Scan and Energy Consumption

- For total n frequency channels, each channel is sequentially examined by transmitting a Probe Request frame.
- A scan trial is completed if n sequential scans are completed.
- A scan trial is successful or failed.
- A scan interval $\tau_s \gg nTe \approx 23 \text{ ms}$ for $n = 11$ since $Te \approx 2.12 \text{ ms}$
802.11 Active Scan and Energy Consumption

- \(s \) is lower-bounded by

\[
\tau_s \geq \tau_s^{\text{min}} = 0.23 \text{ sec}
\]

- For \(s \), the energy consumption is minimized by changing MSTA’s MAC state to sleep or off state.
802.11 Active Scan and Energy Consumption

A scan trial failed, the energy consumption is

\[\delta_{fail} = (DIFS + \frac{aCW_{min}}{2} + \min\text{ChannelTime})P_l + (T_{p_req} - DIFS - \frac{aCW_{min}}{2})P_t. \]

Obviously,

\[\delta_{success} \geq \delta_{fail} \]
TABLE II

POWER CONSUMPTION DEPENDING ON THE MAC STATES OF WLAN [18].

<table>
<thead>
<tr>
<th>MAC States</th>
<th>Power Consumption</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Off</td>
<td>0 mW</td>
<td>Turns off the WLAN interface completely</td>
</tr>
<tr>
<td>Sleep</td>
<td>$P_s = 40 \text{ mW}$</td>
<td>Turns off most parts of circuit except for critical circuit</td>
</tr>
<tr>
<td>Listen</td>
<td>$P_l = 800 \text{ mW}$</td>
<td>Keeps sensing the carrier</td>
</tr>
<tr>
<td>Receive</td>
<td>$P_r = 900 \text{ mW}$</td>
<td>Performs the receive operations such as demodulation</td>
</tr>
<tr>
<td>Transmit</td>
<td>$P_t = 2,000 \text{ mW}$</td>
<td>Transmits the frame to the air</td>
</tr>
</tbody>
</table>
802.11 Active Scan and Energy Consumption

- \(\varepsilon(k) \): the energy consumption after \(k \) scan trials.

- \(\varepsilon_{\text{fail}}(k) \) is the lower bound of \(\varepsilon(k) \), i.e., the energy consumption when all \(k \) trials failed.

\[
\varepsilon_{\text{fail}}(k) = (n \delta_{\text{fail}} + \tau_s P_s) k
\]

- When scanning is done during time \(t \),

\[
k = \left\lceil \frac{t}{nT_e + \tau_s} \right\rceil
\]
802.11 Active Scan and Energy Consumption

- **Proposition 3:** At a given time t, $\mathcal{E}_{\text{fail}}(k)$ is a decreasing function of \mathcal{T}_s.

\[
\frac{d\mathcal{E}_{\text{fail}}}{d\tau_s} = -\frac{nt}{(nT_e + \tau_s)^2} (\delta_{\text{fail}} - P_sT_e)
\]
Analytical Model for Scanning in Mobile Environment

- $\Delta C(k)$ the additional area examined at the k-th scan trial.
- Letting $S(k) = \sum_{i=1}^{k} \Delta C(i)$
- the cumulative probability $Ps(k)$ of a successful scan after k trials can be represented
 $$Ps(k) = 1 - P(0) = 1 - e^{-\rho S(k)}$$
- $Ps(k)$ is proportional to k.
Analytical Model for Scanning in Mobile Environment

- The profiles of the simulation:
 - The side of the square that is assumed to be the coverage of the 802.16e single-cell is
 \[10^3 \sqrt{\pi} \text{ m.}\]
 - At time \(t = 0\), and an MSTA are placed randomly in the square.
 - The MSTA starts to move according to the random waypoint model[19], and moves linearly with the constant speed.
 - A run of simulation is finished if the scan trial is successful or the simulation time reaches \(t_{max}\).
Optimal Scanning Rule

- *Problem 1: Scanning Problem in WLAN*

\[
\min \ E_{\text{fail}} \\
\text{ s.t. } \\
Ps \geq P_{\text{target}}
\]

where the constraint is interpreted that the scan should succeed with a probability larger than \(P_{\text{target}} \).
Optimal Scanning Rule

Proposition 4: ρ_{min} is the minimum ρ, which satisfies $P_s \geq P_{\text{target}}$ using
\[\tau_s = \tau_s^{\text{min}} \]

For a given $\rho > \rho_{\text{mn}}$, we solve Problem 1 using the energy efficient scan policy (ESP) algorithm:
Energy-efficient Scan Policy (ESP)

- a small τ_s is preferred for a given k to minimize ε, from $k = \left\lfloor \frac{t_{\text{max}}}{nT_e + \tau_s} \right\rfloor$

\[\tau_s = \max \left\{ \frac{t_{\text{max}}}{k} - nT_e, \tau_s^{\text{min}} \right\} \]

- According to Proposition 3, k should be minimized to maximize τ_s.

\[k_{\text{min}} = \min \left\{ k \mid S(k) \geq -\frac{\ln (1 - P_{\text{target}})}{\rho} \right\} \]
Energy-efficient Scan Policy (ESP)

Finally, the optimal scan interval τ_s^* is represented as

$$\tau_s^* = \max \left\{ \frac{t_{\text{max}}}{k_{\text{min}}} - nT_e, \tau_{s\text{min}} \right\}$$
VHO Decision Framework

- Delayed Traffic Delivery (DTD)+ESP Algorithm
- Periodic Scan (PS)
- DTD+PS
Conclusion

- 802.11 active scan, we develop a mathematical model, which shows the successful scan probability in terms of the AP density and the scan interval.
- Energy-efficient scan Policy (ESP) algorithm
- Under a practical service charge plan, it is beneficial for user to control the usage of the 802.16e network.