Analysis of a Self-Optimizing Wireless Data Network Using Autonomous Mobile Wireless Routers

Jaeseok Kim; Liuqing Yang; Jenshan Lin;
Electrical and computer engineering
University of Florida

Jonathan Liu
Computer and Information Science And Engineering; University of Florida

Radio and Wireless symposium 2006 IEEE
Presented by 康諾
2006/12/29
OUTLINE

- Introduction
- Network model and simulation set up
- Navigation algorithm
- Simulation Results
- Conclusion
A self-optimizing network capable of reconfiguring itself using mobile wireless routers (MWRs)

Can be deployed after a natural disaster/ man-made and in battlefields or scientific exploration.
MWR previous simulations shown better performance than conventional wireless network:
- larger coverage and lower network outage

However they were based on voice-based CDMA systems.

This work is about a wireless data network using mobile wireless routers for an IP-based network.
Immediate goal:
- Enable the mobility of wireless routers to reduce dropped packets and outage time.

How?: Using robotic platforms and autonomous navigation algorithm.

Long-term goal:
- Use software-configurable PHY layer parameters (antenna, location, frequency, modulation, bandwidth etc) to dynamically optimize network performance.
Network model and simulation set up (1/3)

- Communication between wireless routers and users is modeled according to IEEE 802.11 standard

![Diagram showing network model and simulation setup]

- Speed at 3 to 20m/s
- Open area of 500 m
- 2.472 GHz carrier freq., 1 Mbps data rate, BPSK modulation and 15 dBm transmit power
- 5 Mbps P2P link, enough to support then five users
- Using Frii’s space radio propagation model

Receiver sensitivity is set at -65.3 dBm for 100 m
Network model and simulation set up (2/3)

- The antenna model is omni-directional antenna with 0 dBi gain.
- The same configuration is used at both routers and users.
 - wireless LAN PHY layer is symmetrical
- At $t=10$ s the user start sending data at constant rate (streaming video case).
- At $t=250$ s, the simulation ends.
Three scenarios are simulated and compared:

- **Mobile Wireless Routers (MWRs) and fixed users**
 - Confirm MWR capability of finding out the optimal topology

- **Fixed Wireless Routers (FWRs) and mobile users**
 - Conventional wireless for comparison

- **Mobile Wireless Routers (MWRs) and mobile users**
 - Wireless can reconfigure itself dynamically to match the random distribution of mobile users
Navigation Algorithm (1/3)

- **Center of Gravity (CoG):**
 - based on the geometric center of the neighbor mobile users.

 Let $X_i = \{x_{i1}, \ldots, x_{iN_i}\} = \{x \mid \|x - y_i\| < \|x - y_j\|, \forall j \neq i\}$

 where $i, j \in \{1, 2, \ldots, M\}$.

 i and j are indexes of the M mobile wireless routers.

 N_i is the number of the neighbor users to the wireless router Y_i.

 Geometric center:
 $$\hat{y}_i = \text{avg}(X_i) = \frac{1}{N_i} \sum_{k=1}^{N_i} x_{ik}$$

- **Assumption:** Use of Global Positioning System (GPS) or network triangulation to locate the users.
Navigation Algorithm (2/3)

Modified Circular Hough Transform (CHT):

- Designed to detect the circular shape in a binary image.
- Modified to find the accurate center of coverage range of a wireless router.

1. Draw disk centered at the location of users with radius=radio range transmission
2. Value of overlapped area of disk=number of overlapped disks
3. Get the centroid of the maximum-valued area
Trajectory Prediction:

- Helps to improve the navigation algorithm for fast-moving users.

The linear predictor equation is:

\[\hat{x}_i^{(p)}(t) = p \times (x_i(t) - x_i(t-1)) + x_i(t). \]

- \(p \) is the prediction parameter at time \(t \).
- \(\hat{x}_i^{(p)}(t) \) can replace the current location of the \(i \)-th user at time \(t \), \(X_i(t) \).

- \(p \) is the trade-off between current location and the predicted one, when \(p=0 \), \(\hat{x}_i^{(p)}(t) = \) current location
- \(\hat{x}_i^{(p)}(t) \) is less accurate to indicate the current location when \(p \) increases (long-term behavior)
Use of Network simulator *ns-2* and the model describes in the network setup.

CHT and *CoG* are used independently incorporating *Trajectory prediction* in each case.

For the three following simulations:

- *CoG* is used by mobile wireless routers
- Y-axis represents the data packets number from 1 to 80, normalized from 0 to 1.
- X-axis denotes time from 0 to 250 s
- The black dots = transmitted packets
- The white cross mark = the dropped packets
Simulation results (2/7)

- First scenario: all packets have been transmitted to the central base station without outage.

No white cross because wireless routers have moved to the optimal location of the fixed users.

Fig. 3. Simulation of packet data with Mobile Wireless Routers (MWR) and fixed users.
Second scenario: Outage occurs and packets are dropped.

white crosses are observed because users, moving randomly around fixed wireless routers, can get out of range

Fig. 4. Simulation of packet data with Fixed Wireless Routers (FWR) and mobile users
Simulation results (4/7)

- Third scenario: Dropped packets and outage time are reduced compared to the previous simulation.

 Few white crosses observed, because the MWRs are moving too.

 MWRs are moving to optimize users location based on CoG.
The table below sums up the difference between the second and third scenario. This proves the effectiveness of the navigation algorithm and the proposed network model.

Comparison of Network Performance Using FWR and MWR

<table>
<thead>
<tr>
<th>Scenario</th>
<th>Outage</th>
<th>Packets</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fixed Wireless Router (FWR)</td>
<td>50.2%</td>
<td>7662 19208</td>
</tr>
<tr>
<td>Mobile Wireless Router (MWR)</td>
<td>30.3%</td>
<td>4768 19208</td>
</tr>
<tr>
<td>Improvement</td>
<td>40%↓</td>
<td>38%↓ N/A</td>
</tr>
</tbody>
</table>
The next simulation shows the effectiveness of the trajectory prediction.

Recall linear prediction: \(\hat{x}_i^{(p)}(t) = p \times (x_i(t) - x_i(t-1)) + x_i(t) \).

- No prediction has high dropped packets peaks even when the routers have equal speed as mobile users.

- About 40% dropped packets reduction when routers speed=mobile users speed with prediction.

- No significant effect when MWRs speed is slower to catch up with mobile users.

- Large prediction parameter cannot reduce the number of dropped packets.
The following simulation compares the effectiveness of CoG and CHT on the trajectory prediction when the MWRs are slower:

CHT performs better than CoG because less sensitive to mobile users going in or out of the neighborhood of the slow router.

CHT get its best performance when the router is half speed than mobile user. Enhancing at the same time the prediction effect.

When mobile users speed=router speed, CoG performs better than CHT because the router can easily move back to the right track.
Conclusion

- The self-optimizing wireless using mobile routers improves the network performance.
- Incorporating trajectory prediction with CoG, reduces the number of dropped packets by around 40%, especially when routers have same speed than users.
- As energy constraint may slower routers the modified CHT replacing the CoG provides 30% of reduction.
- There is also a reduction in the number of routers used to cover large area.
- This design is only deployable in limited space
- It will be interesting to integrate Base station mobility in the scenarios.
Frii’s free space radio propagation

- The free space propagation model assumes the ideal propagation condition that there is only one clear line-of-sight path between the transmitter and receiver.
- H. T. Friis presented the following equation to calculate the received signal power in free space at distance d from the transmitter.

$$P_r(d) = \frac{P_t G_t G_r \lambda^2}{(4\pi)^2 d^2 L}$$

 - Where P_t is the transmitted signal power, G_t and G_r are the antenna gains of the transmitter and the receiver respectively.
 - $L (L \geq 1)$ is the system loss, and λ is the wavelength. It is common to select $G_t = G_r = 1$ and $L = 1$ in ns simulations.

- The free space model basically represents the communication range as a circle around the transmitter. If a receiver is within the circle, it receives all packets. Otherwise, it loses all packets.