Weak State Routing for Large Scale Dynamic Networks

MobiCom2007

Chi-Han Lin

March 27, 2008
Outline

- Introduction
- Assumptions
- Weak State Routing
- Simulation
- Conclusions
Introduction

- In a large scale dynamic networks (large scale MANET), traditional routing protocols require high overhead to keep some information.
- This paper proposes Weak State Routing to solve this problem.
- The state information is weak, i.e. interpreted not as absolute truth, but as probabilistic hints.
- Nodes only have partial information about the region a destination node is likely to be.
Assumptions

- All nodes know their positions on a 2-D plane (GPS).
- By using single hop beacon messages, the nodes also know their neighbors and their positions.
- All nodes have uniform omnidirectional antennas.
- There is no ACK after transmitting.
Weak State Routing

- Weak State Routing (WSR) is based on link-state geographic routing protocol.
- WSR doesn’t maintain the state of each node, since there are many and large size beacon messages.
- It only maintains the state of each region.
Weak State Routing

- Every node has a table which maintains the states of the entire network.
- A weak state is composed of four parts:

<table>
<thead>
<tr>
<th>Component Notation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>S</td>
<td>Weak Bloom Filter containing the SetofIDs portion</td>
</tr>
<tr>
<td>X</td>
<td>X coordinate of the center of the GeoRegion</td>
</tr>
<tr>
<td>Y</td>
<td>Y coordinate of the center of the GeoRegion</td>
</tr>
<tr>
<td>R</td>
<td>Magnitude of the radius of the GeoRegion</td>
</tr>
</tbody>
</table>
Weak State Routing

- In order to decrease the beacon message overhead, it decreases the size of the message by using bloom filter and tries to combine some states to one state.
Weak State Routing

- Use bloom filter to calculate the virtual ID (SetofID):
 - There are k hash functions BF_1~BF_k in each node.
 - Every hash function produces a position in virtual ID (n bits, $n>k$).
 - Setting the bits at these positions to 1.
Weak State Routing

- If any two states can combine, then:
 - The new SetofID = SetofID₁ | SetofID₂
 - The new GeoRegion is the smallest circle that contains both GeoRegions.
To combine two states to one state, the two states must satisfy some properties as follows:

- Checking the GeoRegion radius after combining is smaller than or equal to threshold, R.
- $\theta_1 + \theta_2$ is smaller than or equal to threshold, θ.
- Checking the total number of bits set to 1 in SetofID is smaller than or equal to threshold, B.

Weak State Routing
The source transmits data to the next node which is closest to highest confidence area (it’s similar to geographic routing).

I want to send data to D which SetofID is 11000001

<table>
<thead>
<tr>
<th></th>
<th>X</th>
<th>Y</th>
<th>R</th>
</tr>
</thead>
<tbody>
<tr>
<td>S</td>
<td>a₁</td>
<td>b₁</td>
<td>r₁</td>
</tr>
<tr>
<td>10001100</td>
<td>a₂</td>
<td>b₂</td>
<td>r₂</td>
</tr>
<tr>
<td>11001001</td>
<td>a₃</td>
<td>b₃</td>
<td>r₃</td>
</tr>
<tr>
<td>10101001</td>
<td>a₄</td>
<td>b₄</td>
<td>r₄</td>
</tr>
</tbody>
</table>
Weak State Routing

- At each time interval, the bits in each SetofID set to 1 are reset to 0 by a fixed probability p in order to adapt to the dynamic networks.
- Once the number of 1 is below a threshold value, WSR removes the state since the state is too old.
- The data packet is sent to a random direction if there are multiple states which have the same confidence.
Simulation

- NS2
- 2500m x 2500m
- 500~1000 nodes
- Dynamic networks
- $v_{\text{min}} = 5\text{m/s}$, $v_{\text{max}} = 10\text{m/s}$
Simulation

- Packet delivery success rate
Simulation

- Total overhead per second
Simulation

- Number of transmissions per successfully received packet
Simulation

- End to end delay
Simulation

source

destination

Confidence: 0.71

Confidence: 0.84

Confidence: 1
Conclusions

- WSR decreases the size of beacon messages and adapts to large scale dynamic networks.
- Using bloom filter, this mechanism reduces the size of the table which every node maintains.
- In simulation, WSR offers a high packet delivery ratio, more than 98%.
- It also retains high reachability, low overhead and delay.