Cooperative Vehicle Position Estimation

ICC 2007
Lee Li Wei
Outline

- Introduction
- Related work and background information
- Problem definition
- Vehicle position estimation
- Analysis
- Experimentation results
- Conclusions
Introduction

- The cooperative collision warning system will work by vehicles cooperatively sharing information (location, speed, heading, acceleration, etc).
- In order to enable the operation of such a system, it is required that a vehicle build a map of the relative location of neighboring vehicles, in an accurate and reliable way.
Introduction

- GPS-based
 - Global positioning system (GPS)
 - 10 meters error
 - Differential GPS
 - 3-7 meters error
 - Bridges, tunnels, skyscrapers

- Radio based ranging techniques
Outline

- Introduction
- Related work and background information
- Problem definition
- Vehicle position estimation
- Analysis
- Experimentation results
- Conclusions
Related work

- Radio based ranging techniques
 - Stationary sensor network
- Mobility makes localization much more difficult and that position estimation errors increase with speed
- Robust quads algorithm (unambiguous)
- Mobile sensor network (arbitrary direction, speed bound)
Radio based ranging techniques

- Signal strength indicator
- Time-of-flight
- Angle-of-arrival
Outline

- Introduction
- Related work and background information
- **Problem definition**
- Vehicle position estimation
- Analysis
- Experimentation results
- Conclusions
Problem definition

- Consider a cluster of n vehicles labeled $1, 2, \ldots, n$
 - $A = [x_1, x_2, \ldots, x_n, y_1, y_n]$

- Three main vectors
 - Inter-vehicle distance (radio based ranging)
 - Velocity information (onboard sensors)
 - Road map (road boundaries)
Information collected

1. Inter-vehicle distance measurements are made by each vehicle using a radio ranging technology to estimate their relative distance
2. Vehicles will read their own speed information
3. Standard multicast
4. n*(n-1) inter-vehicle distance and n velocity readings
Outline

- Introduction
- Related work and background information
- Problem definition
- Vehicle position estimation
- Analysis
- Experimentation results
- Conclusions
Motion model

- $A_k = A_{k-1} + T_s u_{k-1} + T_s w_{k-1}$ (2)
- $A_k = [x_{1,k}, x_{2,k} \ldots x_{n,k}, y_{1,k} \ldots y_{n,k}]^T$ (3a)
- $u_{k-1} = [v_{x1,k-1}, \ldots v_{xn,k-1}, v_{y1,k-1} \ldots v_{yn,k-1}]^T$ (3b)

T_s: sampling interval

A_k: the position of vehicle at time k

w_{k-1}: mobility variations
Orthogonal to road direction

$\sigma^2_{i,o}$

Road direction

$\sigma^2_{i,a}$
Random variable A

Random variable O

Road direction

Orthogonal to road direction

\[X_i = O \cos \theta + A \sin \theta \]

\[\sigma^2_{X_i} = \sigma_{i,o}^2 \cos^2 \theta + \sigma_{i,a}^2 \sin^2 \theta \]
T = k-1

\[u_{k-1} = [(50,0), (50,0), (60,10), (40,0)] \]

\[A_{k|k-1} = [(0,0), (-15,-20), (25,-10), (0,20)] \]

\[V_{x2} = 50 \quad V_{y2} = 0 \]

\[V_{x1} = 50 \quad V_{y1} = 0 \]

\[V_{x3} = 60 \quad V_{x3} = 10 \]

\[V_{x4} = 40 \quad V_{y4} = 0 \]
\[A_{k|k-1} = [(0,0), (-15,-20), (25,-10), (0,20)] \]
Kalman filter gain

\[K_k = P_{k|k-1} H_k^T (H_k P_{k|k-1} H_k^T + R_k)^{-1} \]

- If \(R_k \) (noise) is large, Kalman filter gain is small.
- If \(R_k \) (noise) is small, Kalman filter gain is large.

\[Z_k = h_k (A) + V_k \]
Assume that Kalman filter gain between node1 and node2 = 0.8

Time = k, value $z_k = 26$, value $h_k(A_{k|k-1}) = 25$, $z_k - h_k(A_{k|k-1}) = 1$

Then node2(-10 + 0.8*1, -20 + 0.8*1) = (-9.2, -19.2)
Vehicle position estimation

1. Each vehicle performs inter-vehicle distance measurement, and take a reading of its own velocity. The information is then shared with all vehicles within the cluster.
2. Update the prediction function (9)(10)
3. Incorporate the measurements from step 2 to update (11)(12)
4. Repeat step 1-4, at the update rate T_s
Algorithm performance bound

Fig. 1. Cramér-Rao bound for position estimates versus our Kalman filter based solution, lower curve shows performance gain by forcing the position estimate to be within the confines of the road
Outline

- Introduction
- Related work and background information
- Problem definition
- Vehicle position estimation
- Analysis
- Experimentation results
- Conclusions
Simulation environment

Fig. 2. Roadway for simulated vehicular environment
Performance Metrics

- Root-mean-square error (RMSE)

\[
\sigma_{\text{final}} = \sqrt{\frac{\sum_{i=1}^{n} (x_{\text{final est. }i} - x_{\text{actual }i})^2 + (y_{\text{final est. }i} - y_{\text{actual }i})^2}{n}}
\]

\[
\sigma_d = \sqrt{\frac{\sum_{i,j=1}^{M} (d_{i,j}^\wedge - d_{i,j})^2}{M}}
\]
Performance comparisons with other algorithms

![Graph showing performance comparisons with other algorithms]

Fig. 3. Showing effect on performance when the inter-vehicle distance estimation error is varied.
Performance comparisons with other algorithms

Fig. 4. Comparison of Nonlinear Least of Squares approach to our Kalman filter based approach, also the performance of using GPS with a mapping module is shown for reference.
Conclusions

- The accuracy of previously proposed radio ranging based localization can be improved by taking into account extra information that is available to vehicles.
- It is practical for future vehicle safety applications.