IP over WDM Path Routing and Restoration

報告人：唐崇實
Outline

• Introduction
• Problem formulation
• Categories of solutions
• Discussion
• Reference
Introduction

- **IP over WDM network**
 - Optical-layer protection can provide fast recovery and high scalability
 - Higher-layer recovery provide finer granularity of recovery
- **Routing and wavelength assignment (RWA)** in WDM network contains
 - Route establishment
 - Wavelength assignment
Problem formulation

• IP over WDM network is modeled as
 – A graph $G(V, E, W)$ where
 • V: set of all nodes
 • E: set of optical links
 • W: set of wavelengths per link
 – Given a request $R(s, d, b)$ from ingress router s to egress router d requiring bandwidth b
 • Find a path and the wavelengths on the links along the path to meet the request requirement
Categories of solutions

- RWA problems can be solved in either
 - Two-stage: wavelength assignment after path routing
 - Joint RWA: consider both in the same time
- Routing problems can be divided into
 - Active/single path routing
 - Backup path routing
 - Disjoint paths routing
- Three generic approaches
 - Integer Linear Programming (ILP) optimization
 - Link-weight based Dijkstra’s algorithm
 - Flooding based path searching
Active/single path routing

• Focus on maximizing network efficiency: to accommodate as many requests as possible
 – IWG [1]
 – MOCA [2]: based on MIRA
 – BI [3]
 – MCPS [4]
IWG

• IWG: IP over WDM Grooming

• Routing is based on cost function

 – Path_Cost = \(N_\text{links} + P \times N_\text{FA-LSP_Links} + Q \times N_\text{hops} \), where

 • \(N_\text{links} \) is the number of new optical links
 • \(N_\text{FA-LSP_Links} \): number of optical links already active
 • \(N_\text{hops} \): number of O/E/O conversions
 • \(P \) and \(Q \): coefficients to adjust performance

 \(P < 1 \) implies fostering reuse of established path
 \(Q > 1 \) means paths with many O/E/O will be avoided
MOCA

- MOCA: Maximum Open Capacity Routing Algorithm
- Idea:
 - Model IP/WDM network with logical links
 - Find the shortest path in a modified network where the link weights are proportional to the criticality of the links
 - Define all links that belong to the minimum cut for an ingress-egress pair to be critical
MOCA network model

Two wavelength per link

After request (4, 3, 0.2)

Link weight after 4→3
BI

- **BI: Blocking Island paradigm**
- **Routing is based on**
 - Construction of BI hierarchy
 - Route existence check
 - K different weighted shortest routes using path cost function
 - **Path_Cost = N_links + P * Active_Lightpaths**
 - Pick the route with minimum splitting cost
MCPS

- MCPS: Multiple Constraints Path Selection
- Idea:
 - Each node maintains local network state info.
 - Routing is based on path information update by flooding
 - Select the best path at destination according to networks’ operational criteria
Backup path routing

• Active path is assumed to be established first based on Dijkstra’s algorithm
• Focus on minimizing reserved bandwidth for all backup paths
 – SPR (Shortest Path Restoration)
 – PIR [6]
 – FIR [5]: enhance PIR
 – DLB [7]
Backup path routing

- **PIR: Partial Information Restoration**
 - Idea: weight each link using an estimate of additional bandwidth that needs to be reserved if a particular restoration path is selected
 - After service path Ps is selected, the source node calculate maximum service bandwidth M over all links along the service path
 - Assign a weight to each link in the network

$$w[i] = \begin{cases}
\min(b, M+b-R[i]) \\
\cdot W[i], & \text{if } M+b-R[i] > 0 \text{ and } i \notin Ps \\
\varepsilon, & \text{if } M+b-R[i] \leq 0 \text{ and } i \notin Ps \\
\infty, & \text{if } i \in Ps
\end{cases}$$
Backup path routing

- **FIR**: Full Information Restoration
 - Idea: after selecting service path Ps, the source node collects the array $T[i]$, the maximum bandwidth needed on link i if any of the links along Ps fails
 - Assign a weight to each link in the network

$$w[i] = \begin{cases} \min (b, T[i] + b - R[i]) \cdot W[i] & \text{if } T[i] + b - R[i] > 0 \\
& \text{and } i \notin Ps \\
\varepsilon & \text{if } T[i] + b - R[i] \leq 0 \\
& \text{and } i \notin Ps \\
\infty & \text{if } i \in Ps. \end{cases}$$
Backup path routing

- **DLB:** Decentralized Local Backup LSP calculation
 - Given the primary path \(P = \{ N_{X_0}, N_{X_1}, \ldots, N_{X_n} \} \)
 - For each node along the primary path, each link is assigned a cost \(K_{ij} \)

- if we protect against node failure
 - \(Inc_{ij}(F, bw) \) if \(i \neq F \land j \neq F \land Inc_{ij}(F, bw) \neq 0 \)
 - \(\varepsilon \) if \(i \neq F \land j \neq F \land Inc_{ij}(F, bw) = 0 \)
 - \(\infty \) if \(i = F \lor j = F \)

- if we protect against link failure
 - \(Inc_{ij}(F, bw) \) if \((i \neq N_{x_k} \lor j \neq F) \land Inc_{ij}(F, bw) \neq 0 \)
 - \(\varepsilon \) if \((i \neq N_{x_k} \lor j \neq F) \land Inc_{ij}(F, bw) = 0 \)
 - \(\infty \) if \(i = N_{x_k} \land j = F \)

- \(Inc_{ij}(F, bw) = R_{ij}' - R_{ij} \) increased reserved bandwidth
Trap problem

- Active path first (APF) heuristic may lead to the so-called “trap problem”
 - Fail to find link-disjoint paths when such a pair exists
Disjoint path routing

- Find link/node-disjoint paths
 - SPP [8]: min-weight disjoint path
 - MIRR [9]: based on MIRA
 - APFE [10]: enhanced APF
 - COLE [11]
MIRR

- MIRR: Minimum Interference Restorable Routing algorithm
- Idea
 - Compute the maximum 2-route flows
 - Compute the 2-critical link sets C_{sd}
 - Compute the criticality indices $w(I)$ as link weight of link I
 - Use SPP to find shortest disjoint paths based on link weight $w(I)$
 - Choose one as active path, the other as backup path
APFE

- **APFE: enhanced Active Path First**
- **Idea:**
 - Find AP (Active Path) using minimum number of links
 - Assign a cost of infinity for every active or reserved channel, assign a cost of M (very big number) for every free channel on a link of AP, assign a cost of 1 for every other free channel
 - Find a minimum cost BP (Backup Path)
 - If AP and BP are not link-disjoint, use the BP as active path and repeat until AP and BP are link disjoint
COLE

- COLE: Conflicting Link Exclusion
- Idea
 - Minimize the cost of AP (Active Path)
 - Find the shortest AP in the network
 - Identify the conflicting link set T
 - Divide the problem P into sub-problems in the form of P(I, O) based on T; the sub-problem without link-disjoint path pairs is further divided
 - Compare link-disjoint path pairs found in each sub-problem, choose the one with shortest AP
Discussion

<table>
<thead>
<tr>
<th>Problems</th>
<th>Single cost</th>
<th>Dual cost</th>
</tr>
</thead>
<tbody>
<tr>
<td>Min-Max</td>
<td>NPC [9], [10]</td>
<td>NPC [9], [10]</td>
</tr>
<tr>
<td>Min-Min</td>
<td>NPC</td>
<td>NPC</td>
</tr>
<tr>
<td>Min-Sum</td>
<td>Polynomial (SPP [4], [5])</td>
<td>Ordered (MSOD)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Uniform (MSOD-U)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Undirected NPC</td>
</tr>
</tbody>
</table>

- Active/single path routing considers WDM wavelengths and logical network thus better utilize network resource, but doesn’t consider backup path simultaneously.
- Backup path routing after active path minimizes reserved bandwidth but may encounter trap problem.
- Disjoint path routing considers optimized disjoint path for restoration, but doesn’t consider WDM layer multi-wavelength effect.

Ref [11]
Discussion

• **Design goal of IP/WDM routing**
 – WDM physical path disjointness
 – With minimum interference to maximize the acceptable requests
 – Consider both dedicated and shared bandwidth among all backup paths

• **Bandwidth sharing may not be allowed**
 – Link-state information for backup paths not available
 – 1+1 redundancy
 – After failure is fixed, traffic will not switched back to the primary path
Reference

Reference

