Secure and Reliable Decentralized Peer-to-peer Web Cache

Presented by Chi-Hung Chao
Outline

- Introduction
- Decentralized Web Cache
- Performance Evaluation
- Conclusion
Web caching is a well developed scheme for improving the performance of web browsing.

Users’ requests can be satisfied by the local cache or the cache of a nearby proxy, instead of a remote web server.

Performance Studies[3,11,22].

Various proxy caching techniques and replacement[1,4,12,14,22].

Cooperative caching architectures and mechanism[5,15,21,23].
One class of the cooperative caching strategies is based on the client-side caching.

- In a LAN environment, the clients’ cache space can be organized and utilized to reduce the total outgoing traffic.
- A client may get web contents from other clients.
- Simulation results indicate that sharing cache among clients can significantly decrease the external traffic.
- However, client-side caching has some fundamental problems:
 - Availabilities of the client platforms are unpredictable.
 - The privacy of users’ access activities should be protected.
Introduction

- Centralized peer-to-peer web caching protocol[24].
- Centralized approaches incur a higher management cost, especially in a large domain.
Introduction

- Decentralized peer-to-peer web cache mechanism – Squirrel[9].
- Squirrel considers two document look-up protocols, home store and directory.
Introduction

- Home store

The diagram illustrates the process of request routing through Pastry. The client requests from other nodes and home, with specific messages a, b1, b2, and b3. The request is routed through Pastry, as indicated by the dashed lines labeled 'Request routed through Pastry.'
Introduction

- Directory

```
client
  a2, d2 : req
  a1 : no dir, go to origin. Also d1.
  a3, d3

other
  req

home
  dir
  c1, e1 : req
  c2, e4 : object
  b : not-modified

delegate
  e3

object or not-modified

origin server
```

```
Introduction

- Privacy issues are not considered in either of the look-up protocols.
- Though these schemes yield a lower external bandwidth, they incur a much higher internal traffic.
- The high hit ratio in these schemes are obtained based on some idealistic assumptions that may not be satisfied in a real environment, such as low failure rate and some necessary operations when nodes join or leave the system.
This paper presents a web caching model based on the decentralized peer-to-peer architecture. Using a hybrid policy that combines existing home store and directory approaches. The combined approach eliminates the problems in the original home store and directory schemes. Developing new algorithms and policies to resolve certain problems that arise due to the combination. A new cache replacement policy based on the hybrid approach has been developed. Encoding the web contents and hiding IP information to protect clients’ privacy.
Decentralized Web Cache

<table>
<thead>
<tr>
<th>Scheme 1</th>
<th>no client cache share, proxy cache</th>
</tr>
</thead>
<tbody>
<tr>
<td>Scheme 2</td>
<td>client cache share, no proxy cache</td>
</tr>
<tr>
<td>Scheme 3</td>
<td>client cache share, proxy cache</td>
</tr>
</tbody>
</table>

- The home store method represents scheme 1.
- The directory approach yields scheme 2.
- The new design in this paper is based on scheme 3.
Decentralized Web Cache

- Splitting the client cache space into two parts.
  - Local cache and Home node cache
  - \( psize \) denote the Home node cache size
  - \( lsize \) denote the Local cache size
  - Both \( psize \) and \( lsize \) are arguments that can be set by users.
Decentralized Web Cache

Access Request Processing

- While a client C requests a web object, it first checks its local cache. If the object is not found, a request message will be forward to the home node H.

- If the home node has cached a copy, it sends the object to C. Otherwise, H randomly pick a delegate D from the directory for the transferring. If the directory is empty, the requesting client will fetch the object from the original server.
Decentralized Web Cache
Decentralized Web Cache

- Cache Replacement
  - Remove pages with expired TTL.
  - When the home node evicts a web object it hosts, it informs all holders of that object so that they can increase the priority of that object in their local cache.
  - On the other hand, when a client evicts a hot page, if it is the last copy or one of the last few copies, it sends the page to the home node.
Node Load Smoothing

- It’s important to keep the load evenly distributed among them.
- In the directory approach, the number of served objects per second can be burst.
- A stricter solution for load balancing is to use a reference counter. Each node keeps an upper bound rlimit, which represents the maximum number of nodes it can be referenced by.

When a home node H wants to add a client C to its directory, H first sends a message to C. C checks its current value of the reference counter. If it’s less than rlimit, C sends an ‘accept’ response to H and increases the reference counter. Otherwise, C sends “deny response to H.
Decentralized Web Cache

- Privacy and Security Issues
  - In web caching systems, a node may not want the others to trace its access history.
  - In the centralized scheme, this could be done by the trusted proxy servers. However, it’s more complex in this self-organizing approach.
  - \((IP, Hash(URL) / (P)_k)\)
  - \(K = f(URL)\)
Performance Evaluation

- Access Frequency

![Graph showing access frequency](image_url)
Performance Evaluation

- Performance
  - We assume that each node has the same size of cache space and we assign the size to 10K, 100K, 1M, 5M, 10M and 20M.
  - We set $psize$ to 30% of the total cache size and TTL to one hour.
Performance Evaluation

- Performance

![Graphs showing performance evaluation for different cache sizes.]
Conclusion

- The experimental study shows that it performs better than the existing schemes in term of hit ratio and node load.
- It may be necessary to partition these objects and cache them on multiple client platforms to avoid occupying a large cache space of a single client and facilitate load smoothing.