On the Effectiveness of Probabilistic Packet Marking for IP Traceback under Denial of Service Attack

IEEE INFOCOM 2001
Kihong Park, Heejo Lee
Outline

- What is Denial of Service Attack?
- What is IP Traceback?
- Related Work
- New Contribution
- PPM and Traceback
- Analysis of Single-source DoS Attack
- Distributed DoS Attack
- Conclusion
What is Denial of Service Attack?

- The attacks used several techniques to crash, hang up, or overwhelm servers with malformed packets or large volumes of traffic.
What is IP Traceback?

- Identified the machines that directly generate attack traffic and the network path this traffic subsequently follows.
Related Work

IP Traceback Scheme:
- Ingress Filtering
- Link Testing
- Logging
- ICMP Traceback
- PPM (Probabilistic Packet Marking)
New Contributions

- This paper analyze the effectiveness of probabilistic packet marking for IP traceback under DoS attack
PPM and Traceback

- Network Model
 - Directed graph $G = (V,E)$
 - V: the set of nodes
 - E: the set of edges
 - S: attackers
 - t: victim ($V\setminus S$)
 - Attack path
 - $A = (s, v_1, v_2, \ldots, v_d, t)$
Attack Path and Forgeable Path
Probabilistic Marking

- Definition
- Path Sampling
 \[\alpha_i(p) = \Pr\{x_d = (v_{i-1}, v_i)\} = p(1 - p)^{d-i}. \]
- Marking Field Spoofing
 \[n_0(p) \geq n_1(p) \iff \alpha_0(p) \geq \alpha_1(p) \]
 \[\iff (1 - p)^d \geq p(1 - p)^{d-1} \quad \text{(III.1)} \]
 \[\alpha_0(p) \geq \sum_{i=1}^{d} \alpha_i(p) \iff (1 - p)^d \geq 1 - (1 - p)^d \]
Probabilistic Marking (cont.)

- Traceback Problem

\[
\alpha_1(p) = \alpha_1^s(p) = \alpha_2^s(p) = \ldots = \alpha_m^s(p)
\]

\[
N\alpha_1(p) = Np(1 - p)^{d-1} \geq 1.
\]

\[
\min_p \max_{x_0,N} m(p, x_0)
\]
The diagram illustrates a network with nodes labeled as follows:

- **s** (source)
- **v_j**
- **v_2**
- **v_d**
- **t** (terminal)
- **u_1, u_2, ..., u_m** (intermediate nodes)

The edges are categorized into two types:

- **Solid arrows** represent the **attack path**.
- **Dashed arrows** indicate the **forgeable paths**.

The diagram shows the flow from the source node **s** through intermediate nodes **v_j**, **v_2**, **v_d**, and finally to the terminal node **t**.
Analysis of Single-Source DoS Attack

\[\Pr \{ x_0 = (u_i, v_1) \} = \frac{1}{m}, \quad i = 1, 2, \ldots, m. \]

\[m \alpha_1(p) = \alpha_0(p) \quad \Leftrightarrow \quad m p (1 - p)^{d-1} = (1 - p)^d \]

\[\Leftrightarrow \quad m = \frac{1}{p} - 1 \]
Approximation of Uncertainty Factor

\[Np(1 - p)^{d-1} \geq 1: \]

\[\frac{1}{N} \leq p \leq 1 - \left(\frac{1}{N} \right)^{\frac{1}{d-1}}. \]

\[m \approx \frac{N^{-\frac{1}{d-1}}}{1 - N^{-\frac{1}{d-1}}}. \]
Numerical Evaluation
Numerical Evaluation
Numerical Evaluation
Distributed DoS Attack

- Any-source traceback
 \[
 \min_{1 \leq i \leq M} \left\{ \frac{\alpha_{i,0}(p)}{\alpha_{i,1}(p)} \right\} = \min_{1 \leq i \leq M} \left\{ \frac{(1 - p)^{d_i}}{p(1 - p)^{d_i-1}} \right\} = \frac{1}{p} - 1.
 \]

- All-source traceback
 \[
 \sum_{i=1}^{M} m^i = \sum_{i=1}^{M} \frac{\alpha_{i,0}(p)}{\alpha_{i,1}(p)} = \sum_{i=1}^{M} \frac{(1 - p)^{d_i}}{p(1 - p)^{d_i-1}} = M \left(\frac{1}{p} - 1 \right)
 \]
Numerical Result
Conclusion

- This paper analyzed the effectiveness of PPM in a minimax adversarial context where the attacker is allowed to spoof the marking field to achieve maximum confusion at the victim.

- We can Choose a suitable marking probability to limit the attacker’s ability.
Conclusion

- If we use different marking scheme, we may get different result.
- We can consider decreasing the marking probability by hop count.