Movement-Assisted Sensor Deployment

INFOCOM 2004
The problem of sensor deployment

- Given the target area, how to maximize the sensor coverage with less time, movement distance and message complexity
- The importance of the problem
- Distributed instead of centralized
Voronoi diagram

- **Definition:**
 Every point in a given polygon is closer to the node in this polygon than to any other node.
Overview of the proposed algorithm

- Sensors broadcast their locations and construct **local Voronoi polygons**
- Find the **coverage holes** by examine Voronoi polygons
- If holes exist, reduce coverage hole by moving
 - VEC, VOR, Minimax
Reduce coverage holes

- **VEC**: VECtor-based
 - *Push* sensors away from a densely covered area

- **VOR**: VORonoi-based
 - *Pull* sensors to the sparsely covered area

- **Minimax**
 - Move sensors to their local center area
VEC algorithm

- Motivated by the attributes of electromagnetic particles
- $d(s_i, s_j)$: distance between sensor i and sensor j
- d_{ave} : average distance between two sensors
- one node fixed, the other will be pushed $d_{ave} - d(s_i, s_j)$
VEC algorithm

- Broadcast hello to neighbors
- Receive hello messages from neighbors and update Voronoi polygon
- Do vector summation
- Do movement adjustment
Movement adjustment

- To reduce the error of virtual-force
- It checks whether the local coverage will be increased by moving to the target location
- If local coverage increased at target location, the sensor will move, otherwise, it will stay
Execution of VEC

75.7% \rightarrow 92.2% \rightarrow 94.7%
VOR algorithm

- Pull sensors to get local maximum coverage
- If a sensor detects coverage holes, it will move toward its farthest Voronoi vertex
VOR algorithm

- VOR is a greedy algorithm
- Try to fix the largest hole
- Should have oscillation control
- Movement adjustment is also applied
Execution of VOR

75.7 % → 89.2 % → 95.6 %
Minimax algorithm

- Fix holes by moving closer to the farthest Voronoi vertex
- Choose the target location whose distance to the farthest Voronoi vertex is minimized
Minimax algorithm

- Based on the belief that a sensor should not be too far away from any of its Voronoi vertices when sensors are evenly distributed
- Result in a more regular shaped Voronoi polygon
Execution of Minimax

75.5 % \rightarrow 92.7 % \rightarrow 96.5 %
Optimizations

• Initial deployment may form clusters
• Explode!
Simulation results

Randomly deployed: about 85 sensors are required to reach 98% coverage
Simulation results

The proposed algorithms: only 40 sensors are needed to reach the same coverage.